Felipe da Veiga Lerprevost

By |

My research concentrates on the area of bioinformatics, proteomics, and data integration. I am particularly interested in mass spectrometry-based proteomics, software development for proteomics, cancer proteogenomics, and transcriptomics. The computational methods and tools previously developed by my colleagues and me, such as PepExplorer, MSFragger, Philosopher, and PatternLab for Proteomics, are among the most referred proteome informatics tools and are used by hundreds of laboratories worldwide.

I am also a Proteogenomics Data Analysis Center (UM-PGDAC) member as part of the NCI’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) initiative for processing and analyzing hundreds of cancer proteomics samples. UM-PGDAC develops advanced computational infrastructure for comprehensive and global characterization of genomics, transcriptomics, and proteomics data collected from several human tumor cohorts using NCI-provided biospecimens. Since 2019 I have been working as a bioinformatics data analyst with the University of Michigan Proteomics Resource Facility, which provides state-of-the-art capabilities in proteomics to the University of Michigan investigators, including Rogel Cancer Center investigators as Proteomics Shared Resource.

Allison Earl

By |

My primary research interests are understanding the causes and consequences of biased selection and attention to persuasive information, particularly in the context of health promotion. Simply stated, I am interested in what we pay attention to and why, and how this attention (or inattention) influences attitudinal and behavioral outcomes, such as persuasion and healthy behavior. In particular, my work has addressed disparities in attention to information about HIV prevention for African-Americans compared to European-Americans as a predictor of disparities in health outcomes. I am also exploring barriers to attention to health information by African-Americans, including the roles of stigma, shame, fear, and perceptions of irrelevance. At a more basic attitudes and persuasion level, I am currently pursuing work relevant to how we select information for liked versus disliked others, and how the role of choice influences how we process information we agree versus disagree with.

Omar Jamil Ahmed

By |

The Ahmed lab studies behavioral neural circuits and attempts to repair them when they go awry in neurological disorders. Working with patients and with transgenic rodent models, we focus on how space, time and speed are encoded by the spatial navigation and memory circuits of the brain. We also focus on how these same circuits go wrong in Alzheimer’s disease, Parkinson’s disease and epilepsy. Our research involves the collection of massive volumes of neural data. Within these terabytes of data, we work to identify and understand irregular activity patterns at the sub-millisecond level. This requires us to leverage high performance computing environments, and to design custom algorithmic and analytical signal processing solutions. As part of our research, we also discover new ways for the brain to encode information (how neurons encode sequences of space and time, for example) – and the algorithms utilized by these natural neural networks can have important implications for the design of more effective artificial neural networks.

Xu Wang

By |

My research is to support more people learn in effective ways. I draw techniques and theories from Human-Computer Interaction, Learning Sciences, and Artificial Intelligence to develop computational methods and systems to support scalable teaching and learning. There are several directions in my research that draw on data science techniques and also contribute to interdisciplinary data science research, 1) data-driven authoring techniques of intelligent tutoring systems, with application domains in UX education and data science education 2) AI-augmented instructional design and the use Human-AI collaborative techniques in instructional design.

Joyce Penner

By |

I am new to researching in Artificial Intelligence used in Atmospheric Sciences. Previous experience is in comparing satellite data products with 3-D global simulations.

Mithun Chakraborty

By |

My broad research interests are in multi-agent systems, computational economics and finance, and artificial intelligence. I apply techniques from algorithmic game theory, statistical machine learning, decision theory, etc. to a variety of problems at the intersection of the computational and social sciences. A major focus of my research has been the design and analysis of market-making algorithms for financial markets and, in particular, prediction markets — incentive-based mechanisms for aggregating data in the form of private beliefs about uncertain events (e.g. the outcome of an election) distributed among strategic agents. I use both analytical and simulation-based methods to investigate the impact of factors such as wealth, risk attitude, manipulative behavior, etc. on information aggregation in market ecosystems. Another line of work I am pursuing involves algorithms for allocating resources based on preference data collected from potential recipients, satisfying efficiency, fairness, and diversity criteria; my joint work on ethnicity quotas in Singapore public housing allocation deserves special mention in this vein. More recently, I have got involved in research on empirical game-theoretic analysis, a family of methods for building tractable models of complex, procedurally defined games from empirical/simulated payoff data and using them to reason about game outcomes.

Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Lana Garmire

By |

My research interest lies in applying data science for actionable transformation of human health from the bench to bedside. Current research focus areas include cutting edge single-cell sequencing informatics and genomics; precision medicine through integration of multi-omics data types; novel modeling and computational methods for biomarker research; public health genomics. I apply my biomedical informatics and analytical expertise to study diseases such as cancers, as well the impact of pregnancy/early life complications on later life diseases.

Annette Ostling

By |

Biodiversity in nature can be puzzlingly high in the light of competition between species, which arguably should eventually result in a single winner. The coexistence mechanisms that allow for this biodiversity shape the dynamics of communities and ecosystems. My research focuses on understanding the mechanisms of competitive coexistence, how competition influences community structure and diversity, and what insights observed patterns of community structure might provide about competitive coexistence.

I am interested in the use and development of data science approaches to draw insights regarding coexistence mechanisms from the structural patterns of ecological communities with respect to species’ functional traits, relative abundance, spatial distribution, and phylogenetic relatedness, through as community dynamics proceed. I am also interested in the use of Maximum Likelihood and Bayesian approaches for fitting demographic models to forest census data sets, demographic models that can then be used to quantitatively assess the role of different competitive coexistence mechanisms.