Catherine Kaczorowski

By |

The Kaczorowski laboratory, led by Dr. Catherine Kaczorowski, pioneers techniques to identify and validate genetic and cellular mechanisms that promote resilience to cognitive aging, Alzheimer’s disease, and other age-related dementias. By combining mouse and human systems; genomic, anatomic, and behavioral approaches; and integrative analyses across multiple scales, data types, environmental factors, and species, we are accelerating the discovery of the precise genetic mechanisms of cognitive resilience that could yield the next generation of targets and therapeutic strategies for promoting brain health. We are now uniquely poised to propel the field of personalized medicine forward using our genetically diverse, yet reproducible models of human neurodegenerative dementias, having already contributed conceptual and technical advances that revolutionized our ability to study complex diseases, specifically human AD dementia.

John Barry Ryan

By |

My research focuses on the subfield of political communication using three primary quantitative methodologies: surveys, experiments (both psychological and behavioral economic), and content coding of text. My research has looked at the content of campaign websites, scholar’s social media accounts, newspaper coverage of elections as well as networked participants involving mock elections in a lab.My research focuses on the subfield of political communication using three primary quantitative methodologies: surveys, experiments (both psychological and behavioral economic), and content coding of text. My research has looked at the content of campaign websites, scholar’s social media accounts, newspaper coverage of elections as well as networked participants involving mock elections in a lab.

Peter Reich

By |

Reich conducts global change research on plants, soils, ecosystems and people across a range of scales. His work links fundamental physiology with community dynamics and ecosystem structure and function, from the patch to the globe, within the context of the myriad of global environmental challenges that face us. This includes studying the effects on natural and human ecosystems of rising CO2 and associated climate change, biodiversity loss, and wildfire. This research involves a variety of tools and approaches (long-term experiments, observations, global data compilations, statistical and simulation models), a diverse set of ecosystems (boreal forest, temperate grassland, and more), and a range of scales (local, regional, global). The overarching goal is to understand what we humans are doing to nature in order to help orchestrate a shift towards a nature-forward prioritization that will in turn support and sustain human society.

I studied physics and creative writing and became interested in the fate of our environment; over time I began using tools from each focal area to advance ecological science in a changing world

Cheng Li

By |

My research focuses on developing advanced numerical models and computational tools to enhance our understanding and prediction capabilities for both terrestrial and extraterrestrial climate systems. By leveraging the power of data science, I aim to unravel the complexities of atmospheric dynamics and climate processes on Earth, as well as on other planets such as Mars, Venus, and Jupiter.

My approach involves the integration of large-scale datasets, including satellite observations and ground-based measurements, with statistical methods and sophisticated machine learning algorithms including vision-based large models. This enables me to extract meaningful insights and improve the accuracy of climate models, which are crucial for weather forecasting, climate change projections, and planetary exploration.

Alauddin Ahmed

Alauddin Ahmed

By |

My core research expertise involves developing and employing a wide array of computational methods to discover, design, and characterize materials and systems that address critical challenges in energy and the environment. These methods span from stochastic techniques to molecular dynamics, density functional theory, quantum chemistry, and data science. Beyond contributing fundamental design principles for high-performing materials, my research has led to the discovery of record-breaking materials for hydrogen storage, natural gas storage, and thermal energy storage, alongside creating open-access databases, machine learning models, and Python APIs.

In data science, I have uniquely contributed to feature engineering, compressed sensing, classical machine learning algorithms, symbolic regression, and interpretable ML. My approach to feature engineering involves crafting or identifying a concise set of meaningful features for developing interpretable machine learning models, diverging from traditional data reduction techniques that often disregard the underlying physics. Moreover, I have enabled the use of compressed sensing-based algorithms for developing symbolic regressions for large datasets, utilizing statistical sampling and high-throughput computing. I’ve also integrated symbolic regression and constrained optimization methods for the inverse design of materials/systems to meet specific performance metrics, and I continue to merge machine learning with fundamental physical laws to demystify material stability and instability under industrial conditions.

Looking forward, my ongoing and future projects include employing machine learning for causal inference in healthcare to understand and predict outcomes and integrating AI to conduct comprehensive environmental and social impact analyses of materials/systems via life cycle analysis. Furthermore, I am exploring quantum computing and machine learning to drive innovation and transform vehicle energy systems and manufacturing processes.

 


Accomplishments and Awards

Tian An Wong

By |

Analysis of policing technology and police data, including impact assessment of surveillance technology, media sentiment analysis, and fatal police violence. Methods include topological data analysis, natural language processing, multivariate time series analysis, difference-in-differences, and complex networks.

 


Research Highlights

Mohammed Ombadi

Mohammed Ombadi

By |

My research focuses on understanding and quantifying climate change impacts on hydroclimatic extremes. From heavy storms and floods to extreme heatwaves and droughts, I study the changing characteristics of these events and their impacts on our daily lives. I use a wide range of data-driven methods such as causal inference, information theory, nonlinear dynamics and machine learning in the analysis of environmental systems. I am primarily interested in using causal inference to obtain new mechanistic insights on the impact of global warming on extreme weather events. My recent work has explored global warming impact on extreme events such as rainfall extremes, using a combination of observations and model simulations. Additionally, recent work has focused on developing new techniques to measure resilience of environmental systems to extreme events, with the ultimate goal of informing mitigation and adaptation strategies to climate change.Map of the Northern Hemisphere showing the projected increase in extreme daily rainfall by 2100 relative to 1950–1979 (the risk ratio). Darker areas are predicted to be more prone to increased rainfall extremes with global warming.

Map of the Northern Hemisphere showing the projected increase in extreme daily rainfall by 2100 relative to 1950–1979 (the risk ratio). Darker areas are predicted to be more prone to increased rainfall extremes with global warming.

What are some of your most interesting projects?

Resilience of Watersheds to Extreme Weather and Climate Events:

Hydrologic watersheds are the fundamental units of the land surface used in the analysis and management of water resources systems. The response of watersheds to extreme events is highly complex and determined by a multitude of factors, including the presence of dams and reservoirs, snowpack, groundwater-surface water interaction, and vegetation cover, among others. One significant knowledge gap in this field of research is how to objectively and unambiguously quantify the resilience and resistance of watersheds to extreme events, such as droughts and floods. Developing metrics to quantify resilience is of utmost importance, particularly in light of the changing characteristics of extreme events due to global warming.

In this project, I employ a wide range of statistical methods to quantify resilience. I then apply methods of machine learning, causal inference, and graph-based techniques to explore patterns of resilience across watersheds worldwide.

How did you end up where you are today?

I originally hail from Sudan, nestled at the heart of Africa. Growing up along the banks of the Nile River, I developed an early fascination with water and its profound connection to humanity. On one hand, it provides people with their needs for drinking, agriculture, transportation, and recreation. On the other hand, an excess or shortage of water often results in devastating natural disasters, such as floods, droughts, and famines. Throughout antiquity, humans have endeavored to regulate rivers by building dams, canals, and various other structures. This deep-seated interest in water sciences and related engineering disciplines led me to pursue a degree in Civil Engineering.

Following my college graduation, I chose to embark on graduate studies to delve deeper into the intricate relationship between climate change and the water cycle. Embarking on an arduous 18-hour flight, I traversed the vast Atlantic Ocean and the continental expanse of the United States to arrive in California, the Golden State. There, I successfully completed my MSc and PhD degrees at the University of California, Irvine, in just under five years. Subsequently, I relocated northward to Berkeley, where I conducted my postdoctoral research, focusing on the impact of global warming on climate extreme events. I come to University of Michigan with a deep research interest in exploring the impact of global warming on extreme events and the resilience of ecosystems to such events. My research group harness recent advances in data science (machine learning, causal inference and information theory) to obtain new mechanistic and predictive insights on these questions with the ultimate goal of informing climate change adaptation strategies.

Saif Benjaafar

Saif Benjaafar

By |

I used the tools of operations research (optimization, stochastic modeling, and game theory), machine learning, and statistics to study problems in operations management broadly defined, including supply chains, service systems, transportation and mobility, and markets. My current research focus is on sustainable operations and innovative business models, including sharing economy, on-demand services, and online marketplaces.

Yan Chen

Yan Chen

By |

Yan Chen’s research interests are in behavioral and experimental economics, market and mechanism design. She conducts large-scale randomized field experiments on gig economy platforms to test the efficacy of team formation algorithms on gig worker productivity and retention. She also conducts experiments in online communities to evaluate what increases pro-social behavior. Her experiments are informed by economic theory and causal inference techniques.


Accomplishments and Awards