Liu Liu

By |

My primary career interest is making new discoveries through creative thinking and innovative investigations. My long term research interests in the molecular mechanisms of heart regeneration to effectively prolong and improve the lives of heart patients, particularly in the development of a comprehensive understanding of post-translational/epigenetics regulation for cardiac reprogramming based heart therapy. I am developing a novel concept for a post-translational modification (PTM) code that is applicable across different proteins. I am utilizing computational methods to gain insights into the functional implications of PTMs that transcend protein boundaries.

Kamran Diba

Kamran Diba

By |

My lab is primarily interested in how the brain represents, coordinates, and stores memories. Hippocampal neuronal networks generate an assortment of firing patterns that vary depending on the behavior and state of an animal, from active exploration to resting and different stages of sleep. In our lab’s extracellular recordings from large populations of spiking neurons in rodents, we observe state-dependent temporal relationships between activities at multiple timescales. Recent work in my lab is aimed at understanding what role these unique spike patterns play and what they tell us about the function and limitations of different brain states for memory in healthy and compromised animals. To answer these and related questions, we combine behavioral studies of freely moving, learning and exploring rats, multi-channel recordings of the simultaneous electrical (spiking) activity from hundreds of neurons during behavior, sleep and sleep-deprivation, statistical and machine learning tools to uncover deep structure within high-dimensional spike trains, and chemogenetics and optogenetics to manipulate protein signaling and action potentials in specific neural populations in precise time windows.

Spike times recorded from a population of hippocampal neurons during running on a maze.

Spike times recorded from a population of hippocampal neurons during running on a maze.

What are some of your most interesting projects?

Evaluating the impact of sleep loss on hippocampal replay.
Using unsupervised machine learning to evaluate the temporal structure of hippocampal firing patterns during sleep.

What is the most significant scientific contribution you would like to make?

Understand how the hippocampus serves memory and what role sleep plays in this process.

What makes you excited about your data science and AI research?

The potential for AI models to help explain how the brain works.

Bing Ye

Bing Ye

By |

The focus of our research is to address (1) how neuronal development contributes to the assembly and function of the nervous system, and (2) how defects in this process lead to brain disorders. We take a multidisciplinary approach that include genetics, cell biology, developmental biology, biochemistry, advanced imaging (for neuronal structures and activity), electrophysiology, computation (including machine learning and computer vision) and behavioral studies.

We are currently studying the neural basis for decision accuracy. We established imaging and computational methods for analyzing neural activities in the entire central nervous system (CNS) of the Drosophila larva. Moreover, we are exploring the possibility of applying the biological neural algorithms to robotics for testing these algorithms and for improving robot performance.

A major goal of neuroscience is to understand the neural basis for behavior, which requires accurate and efficient quantifications of behavior. To this end, we recently developed a software tool—named LabGym—for automatic identification and quantification of user-defined behavior through artificial intelligence. This tool is not restricted to a specific species or a set of behaviors. The updated version (LabGym2) can analyze social behavior and behavior in dynamic backgrounds. We are further developing LabGym and other computational tools for behavioral analyses in wild animals and in medicine.

The behavior that this chipmunk performed was identified and quantified by LabGym, an AI-based software tool that the Ye lab developed for quantifying user-defined behaviors.

The behavior that this chipmunk performed was identified and quantified by LabGym, an AI-based software tool that the Ye lab developed for quantifying user-defined behaviors.

What are some of your most interesting projects?

1) Develop AI-based software tools for analyzing the behavior of wild animals and human.
2) Use biology-inspired robotics to test biological neural algorithms.

How did you end up where you are today?

Since my teenage years, I have been curious about how brains (human’s and animals’) work, enjoyed playing with electronics, and learning about computational sciences. My curiosity and opportunities led me to become a neuroscientist. When I had my own research team and the resources to explore my other interests, I started to build simple electronic devices for my neuroscience research and to collaborate with computational scientists who are experts in machine learning and computer vision. My lab now combines these approaches in our neuroscience research.

What makes you excited about your data science and AI research?

I am very excited about the interactions between neuroscience and data science/AI research. This is a new area and has great potential of changing the society.

Saif Benjaafar

Saif Benjaafar

By |

I used the tools of operations research (optimization, stochastic modeling, and game theory), machine learning, and statistics to study problems in operations management broadly defined, including supply chains, service systems, transportation and mobility, and markets. My current research focus is on sustainable operations and innovative business models, including sharing economy, on-demand services, and online marketplaces.

Yan Chen

Yan Chen

By |

Yan Chen’s research interests are in behavioral and experimental economics, market and mechanism design. She conducts large-scale randomized field experiments on gig economy platforms to test the efficacy of team formation algorithms on gig worker productivity and retention. She also conducts experiments in online communities to evaluate what increases pro-social behavior. Her experiments are informed by economic theory and causal inference techniques.

Runzi Wang

Runzi Wang

By |

Runzi Wang is a transdisciplinary researcher who studies change in natural and urban environments across space and over time, with the objective of driving positive change with ecological planning and design strategies. Combining technologies such as big data, machine learning, remote sensing, and spatial statistics, her primary research explores how land cover change and urban development pattern influence stream water quality and stormwater quality at the watershed basis, together with various environmental, climatic, and sociocultural factors. By enhancing the interpretability of machine learning in its application to landscape architecture, the most innovative part of her research is to uncover the nonlinear, interacted relationships between environmental, technological, and sociocultural dimensions of landscape systems.

What are some of your most interesting projects?

  1. I conducted the first continental-scale urban stream water quality study funded by MIDAS. We applied geospatial analysis to investigate the characteristics of the built environment (e.g., building footprint, street length, land use spatial pattern) associated with urban stream water quality, the social inequities regarding exposure to stream water contamination, as well as the spatial variations in the above processes. We developed data integration protocols for data from remote sensing products, in-situ observations, and the US Census Bureau. Using Bayesian hierarchical models, we concluded that watersheds with a higher percentage of minorities are associated with higher nutrient pollution, with the relationship being more significant in the American Northwest.
  2. I investigated how land use planning and best management practices mitigated climate change effects on Lake Erie’s water quality. With the integration of longitudinal watershed land cover, agricultural, and climatic data from 1985-2017, we found that no-tillage and reduced tillage management were effective mitigation strategies that could decrease water quality sensitivity to climate change. We plan to advance this work by fusing remote sensing-based bloom detection and process-based simulation to investigate how climate change, land cover change, and anthropogenic activities will impact the eutrophication of Lake Erie.

How did you end up where you are today?

I have a highly interdisciplinary background, receiving training in architecture, landscape architecture, urban planning, statistics, hydrology and water quality, and broader social science topics. This forms my research topic to study the relationships between people, land, and water. Specifically, I study the interconnectedness between people living in the watershed, the land use and urban form of the watershed’s built form, the resulting water quality conditions, and the ecosystem services urban streams provide for people. This background also leverages many different methodologies in my work, including data science, hydrological models, social science methods, and so on. In addition, the most important thing about my research journey is that I have a few excellent friends/researchers who help me a lot on my way and make my research life inspiring and delightful most of the time.

Todd Allen

Todd Allen

By |

My research is focussed on nuclear energy systems and public policy. My research has included data analysis to predict equipment failures and materials degradation.

Siddhartha Srivastava

Siddhartha Srivastava

By |

My research broadly revolves around extending, specializing, and developing novel ML/AI methods for computational mechanics. My primary focus is data-driven physics-based modeling that utilizes approaches like Variational System Identification and PDE-constrained optimization. I apply these methods for inferring PDE models for complex physical phenomena, for instance, foldings during brain growth, deformation mechanics in soft matter (human tissue and ligaments), and migration and proliferation in biological cells. I also develop graph-based approaches for Machine Learning and NISQ (Noisy Intermediate Scale Quantum) computing. These methods are rooted in classical physics and mathematical analysis but simultaneously developed in concert with real-life experimental data.

Liang Zhao

Liang Zhao

By |

I am working on analyzing the solar wind plasma measurements obtained by multiple space missions. Especially, I am interested in the solar wind heavy ion elemental abundance and charge states measured by SWICS on Ulysses and ACE and HIS onboard Solar Orbiter mission. Applications of machine learning and artificial intelligence algorithms on solar wind plasma classification and heliophysics parameter prediction are a brand new research area that we have been working on.

Additional Information

What are some of your most interesting projects?

How did you end up where you are today?

What is the most significant scientific contribution you would like to make?

What makes you excited about your data science and AI research?

What are 1-3 interesting facts about yourself?

Maria Masotti

Maria Masotti

By |

Dr. Masotti develops statistical methods for data derived from medical imaging processes. This data presents unique challenges such as spatial and temporal autocorrelation and high dimensionality.

Dr. Masotti developed a 3D boundary detection algorithm for discovering prostate cancer lesions non-invasively via multi-parametric MRI. This image displays the different theoretical tumor volumes in blue and the estimated boundary surface in red.

Image: Dr. Masotti developed a 3D boundary detection algorithm for discovering prostate cancer lesions non-invasively via multi-parametric MRI. This image displays the different theoretical tumor volumes in blue and the estimated boundary surface in red.