Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Jodyn Platt

By |

Our team leads research on the Ethical, Legal, and Social Implications (ELSI) of learning health systems and related enterprises. Our research uses mixed methods to understand policies and practices that make data science methods (data collection and curation, AI, computable algorithms) trustworthy for patients, providers, and the public. Our work engages multiple stakeholders including providers and health systems, as well as the general public and minoritized communities on issues such as AI-enabled clinical decision support, data sharing and privacy, and consent for data use in precision oncology.

Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.

Sophia Brueckner

By |

Sophia Brueckner is a futurist artist/designer/engineer. Inseparable from computers since the age of two, she believes she is a cyborg. As an engineer at Google, she designed and built products used by millions. At RISD and the MIT Media Lab, she researched the simultaneously empowering and controlling nature of technology with a focus on haptics and social interfaces. Her work has been featured internationally by Artforum, SIGGRAPH, The Atlantic, Wired, the Peabody Essex Museum, Portugal’s National Museum of Contemporary Art, and more. Brueckner is the founder and creative director of Tomorrownaut, a creative studio focusing on speculative futures and sci-fi-inspired prototypes. She is currently an artist-in-residence at Nokia Bell Labs, was previously an artist-in-residence at Autodesk, and is an assistant professor at the University of Michigan teaching Sci-Fi Prototyping, a course combining sci-fi, prototyping, and ethics. Her ongoing objective is to combine her background in art, design, and engineering to inspire a more positive future.

Omar Jamil Ahmed

By |

The Ahmed lab studies behavioral neural circuits and attempts to repair them when they go awry in neurological disorders. Working with patients and with transgenic rodent models, we focus on how space, time and speed are encoded by the spatial navigation and memory circuits of the brain. We also focus on how these same circuits go wrong in Alzheimer’s disease, Parkinson’s disease and epilepsy. Our research involves the collection of massive volumes of neural data. Within these terabytes of data, we work to identify and understand irregular activity patterns at the sub-millisecond level. This requires us to leverage high performance computing environments, and to design custom algorithmic and analytical signal processing solutions. As part of our research, we also discover new ways for the brain to encode information (how neurons encode sequences of space and time, for example) – and the algorithms utilized by these natural neural networks can have important implications for the design of more effective artificial neural networks.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Mithun Chakraborty

By |

My broad research interests are in multi-agent systems, computational economics and finance, and artificial intelligence. I apply techniques from algorithmic game theory, statistical machine learning, decision theory, etc. to a variety of problems at the intersection of the computational and social sciences. A major focus of my research has been the design and analysis of market-making algorithms for financial markets and, in particular, prediction markets — incentive-based mechanisms for aggregating data in the form of private beliefs about uncertain events (e.g. the outcome of an election) distributed among strategic agents. I use both analytical and simulation-based methods to investigate the impact of factors such as wealth, risk attitude, manipulative behavior, etc. on information aggregation in market ecosystems. Another line of work I am pursuing involves algorithms for allocating resources based on preference data collected from potential recipients, satisfying efficiency, fairness, and diversity criteria; my joint work on ethnicity quotas in Singapore public housing allocation deserves special mention in this vein. More recently, I have got involved in research on empirical game-theoretic analysis, a family of methods for building tractable models of complex, procedurally defined games from empirical/simulated payoff data and using them to reason about game outcomes.

Bogdan I. Epureanu

By |

• Computational dynamics focused on nonlinear dynamics and finite elements (e.g., a new approach for forecasting bifurcations/tipping points in aeroelastic and ecological systems, new finite element methods for thin walled beams that leads to novel reduced order models).
• Modeling nonlinear phenomena and mechano-chemical processes in molecular motor dynamics, such as motor proteins, toward early detection of neurodegenerative diseases.
• Computational methods for robotics, manufacturing, modeling multi-body dynamics, developed methods for identifying limit cycle oscillations in large-dimensional (fluid) systems.
• Turbomachinery and aeroelasticity providing a better understanding of fundamental complex fluid dynamics and cutting-edge models for predicting, identifying and characterizing the response of blisks and flade systems through integrated experimental & computational approaches.
• Structural health monitoring & sensing providing increased sensibility / capabilities by the discovery, characterization and exploitation of sensitivity vector fields, smart system interrogation through nonlinear feedback excitation, nonlinear minimal rank perturbation and system augmentation, pattern recognition for attractors, damage detection using bifurcation morphing.

Tayo Fabusuyi

By |

Tayo Fabusuyi is an assistant research scientist in the Human Factors Group at UMTRI. His research interests are in Urban Systems and Operations Research, specifically designing and implementing initiatives that support sustainable and resilient communities with a focus on efficiency and equity issues. Drawing on both quantitative and qualitative data, his research develops and applies hard and soft Operations Research methods to urban systems issues in a manner that emphasizes theory driven solutions with demonstrated value-added. A central theme of his research activities is the use of demand side interventions, via information and pricing strategies in influencing the public’s travel behavior with the objective of achieving more beneficial societal outcomes. Informed by the proliferation of big data and the influence of transportation in the urban sphere, these research activities are categorized broadly into three overlapping and interdependent areas – intelligent transportation systems (ITS), emerging mobility services and urban futures. Before joining the research faculty at UMTRI, Dr. Fabusuyi was a Planning Economist at the African Development Bank and an adjunct Economics faculty member at Carnegie Mellon University, where he received his Ph.D. in Engineering and Public Policy.

Shaobing Xu

By |

My work lies in the learning, control, and design of autonomous systems with an emphasis on connected automated vehicles (CAVs). I have been committed to developing robust autonomous vehicles, augmented reality (AR) technology, and V2X systems at Mcity. The highlights include: (1) a robust self-driving algorithm/software stack enabling high-level CAVs; (2) a data-and-AI-driven sensor-level augmented reality (AR) system for efficient safe CAV tests. These systems have been deployed on the Mcity CAV fleet and Mcity testing track for daily operations. I am interested in using big naturalistic human-driving data to train motion planning and control algorithms of self-driving cars, so the automated cars could behave with better roadmanship and thus higher acceptance. I am also interested in data-driven low-uncertainty learning algorithms for object detection, tracking, and fusion, in order to build the perception system of safety-critical autonomous systems.