Wenbo Sun

By |

Uncertainty quantification and decision making are increasingly demanded with the development of future technology in engineering and transportation systems. Among the uncertainty quantification problems, Dr. Wenbo Sun is particularly interested in statistical modelling of engineering system responses with considering the high dimensionality and complicated correlation structure, as well as quantifying the uncertainty from a variety of sources simultaneously, such as the inexactness of large-scale computer experiments, process variations, and measurement noises. He is also interested in data-driven decision making that is robust to the uncertainty. Specifically, he delivers methodologies for anomaly detection and system design optimization, which can be applied to manufacturing process monitoring, distracted driving detection, out-of-distribution object identification, vehicle safety design optimization, etc.

J.J. Prescott

By |

Broadly, I study legal decision making, including decisions related to crime and employment. I typically use large social science data bases, but also collect my own data using technology or surveys.

Benjamin Fish

By |

My research tackles how human values can be incorporated into machine learning and other computational systems. This includes work on the translation process from human values to computational definitions and work on how to understand and encourage fairness while preventing discrimination in machine learning and data science. My research combines tools from the theory of machine learning with insights from economics, science and technology studies, and philosophy, among others, to improve our theories of the translation process and the algorithms we create. In settings like classification, social networks, and data markets, I explore the ways in which human values play a primary role in the quality of machine learning and data science.

The likelihood of receiving desirable information like public health information or job advertisements depends on both your position in a social network, and on who directly gets the information to start with (the seeds). This image shows how a new method for deciding who to select as the seeds, called maximin, outperforms the most popular approach in previous literature by decreasing the correlation between where you are in the social network and your likelihood of receiving the information. These figures are taken from work by Benjamin Fish, Ashkan Bashardoust, danah boyd, Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. Gaps in information access in social networks. In The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages 480–490, 2019.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Jodyn Platt

By |

Our team leads research on the Ethical, Legal, and Social Implications (ELSI) of learning health systems and related enterprises. Our research uses mixed methods to understand policies and practices that make data science methods (data collection and curation, AI, computable algorithms) trustworthy for patients, providers, and the public. Our work engages multiple stakeholders including providers and health systems, as well as the general public and minoritized communities on issues such as AI-enabled clinical decision support, data sharing and privacy, and consent for data use in precision oncology.

Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.

Sophia Brueckner

By |

Sophia Brueckner is a futurist artist/designer/engineer. Inseparable from computers since the age of two, she believes she is a cyborg. As an engineer at Google, she designed and built products used by millions. At RISD and the MIT Media Lab, she researched the simultaneously empowering and controlling nature of technology with a focus on haptics and social interfaces. Her work has been featured internationally by Artforum, SIGGRAPH, The Atlantic, Wired, the Peabody Essex Museum, Portugal’s National Museum of Contemporary Art, and more. Brueckner is the founder and creative director of Tomorrownaut, a creative studio focusing on speculative futures and sci-fi-inspired prototypes. She is currently an artist-in-residence at Nokia Bell Labs, was previously an artist-in-residence at Autodesk, and is an assistant professor at the University of Michigan teaching Sci-Fi Prototyping, a course combining sci-fi, prototyping, and ethics. Her ongoing objective is to combine her background in art, design, and engineering to inspire a more positive future.

Omar Jamil Ahmed

By |

The Ahmed lab studies behavioral neural circuits and attempts to repair them when they go awry in neurological disorders. Working with patients and with transgenic rodent models, we focus on how space, time and speed are encoded by the spatial navigation and memory circuits of the brain. We also focus on how these same circuits go wrong in Alzheimer’s disease, Parkinson’s disease and epilepsy. Our research involves the collection of massive volumes of neural data. Within these terabytes of data, we work to identify and understand irregular activity patterns at the sub-millisecond level. This requires us to leverage high performance computing environments, and to design custom algorithmic and analytical signal processing solutions. As part of our research, we also discover new ways for the brain to encode information (how neurons encode sequences of space and time, for example) – and the algorithms utilized by these natural neural networks can have important implications for the design of more effective artificial neural networks.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.