Joyce Chai

Joyce Chai

By |

My research interests are in the area of natural language processing, situated dialogue agents, and artificial intelligence. I’m particularly interested in language processing that is sensorimotor-grounded, pragmatically-rich, and cognitively-motivated. My current work explores the intersection of language, vision, and robotics to facilitate situated communication with embodied agents and applies different types of data (e.g., capturing human behaviors in communication, perception, and, action) to advance core intelligence of AI.

Vineet Kamat

Vineet Kamat

By |

My group conducts research in automation and robotics to improve work processes in the construction, operation, and maintenance of civil infrastructure and the built environment. Our research has developed several licensable technologies that include visualization, perception, and modeling techniques to help on-site construction robots with autonomous decision making. We are particularly interested in exploring new methods for enabling collaborative work strategies for human-robot teams jointly performing field construction work. In addition, we are also interested in exploring methods to integrate data to support semi-autonomous mobility for people with physical disabilities in the urban built environment.

Data-Driven Co-Robotic Field Construction Work

Michael Cianfrocco

Michael Cianfrocco

By |

Dr. Michael Cianfrocco uses cryo-electron microscopy (cryo-EM) to determine protein structures to understand how nanometer-sized molecular machines work. While a powerful technique, cryo-EM data collection and subsequent image analysis remain bespoke, clunky, and heuristic. Dr. Cianfrocco is coupling his 16+ years of experience with artificial intelligence to automate data collection and processing by capturing human expertise into AI-based algorithms. Recently, his laboratory implemented reinforcement learning to guide cryo-electron microscopes for data collection [1, 2]. This work combined real-world datasets and Dr. Cianfrocco’s expertise with AI-driven optimization algorithms to find the ‘best’ areas of cryo-EM samples for data collection.

cryoRL Distributed Data Collection process diagram

Human users must curate and select areas for subsequent analysis after data collection. Subjective decisions guide how to process the single particles and determine what constitutes ‘good’ data. To automate subsequent preprocessing, Dr. Cianfrocco’s lab built the first AI-backed data preprocessing in cryo-EM by training CNNs to recognize ‘good’ and ‘bad’ cryo-EM data [3]. This work enabled fully-automated cryo-EM data preprocessing, the first step in the processing pipeline of cryo-EM data. In the future, Dr. Cianfrocco wants to continue improving cryo-EM workflows to make them robust and automated, eventually surpassing human experts in the ability of algorithms to collect and analyze cryo-EM data. 1. Fan Q*, Li Y*, et al. “CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection.” arXiv preprint arXiv:2204.07543 (2022). 2. Li Y*, Fan Q*, Optimized path planning surpasses human efficiency in cryo-EM imaging. bioRxiv 2022.06.17.496614 (2022). 3. Li Y, High-Throughput Cryo-EM Enabled by User-Free Preprocessing Routines. Structure. 2020 Jul 7;28(7):858-869.e3.

Peter Song

Peter Song

By |

My research interests lie in two major fields: In the field of statistical methodology, my interests include data integration, distributed inference, federated learning and meta learning, high-dimensional statistics, mixed integer optimization, statistical machine learning, and spatiotemporal modeling. In the field of empirical study, my interests include bioinformatics, biological aging, epigenetics, environmental health sciences, nephrology, nutritional sciences, obesity, and statistical genetics.

Dimitra Panagou

Dimitra Panagou

By |

Dimitra Panagou’s research lies in the areas of multi-agent systems and control, with applications in multi-robot/vehicle systems. She is particularly interested in establishing safety and resilience against adversity and uncertainty for multi-robot/vehicle systems using techniques from (networked) control theory, estimation theory, and machine learning.

Mariel Lavieri

Mariel Lavieri

By |

Dr. Lavieri’s group is focused on creating novel modeling frameworks that utilize the rich datasets available in healthcare to personalize screening, monitoring, and treatment decisions of chronic disease patients. Her group has also created models for health workforce and capacity planning.

Anthony Bloch

Anthony Bloch

By |

My research interests include : Hamiltonian and Lagrangian mechanics, gradient flows on manifolds, integrable systems stability, the motion of mechanical systems with constraints, the relationship between continuous and discrete flows, nonlinear and optimal control and the control of quantum systems. I also interested in data-guided control and in particular the dynamics and control
of networks and systems arising from large sets, particularly in biological applications.

Sally Oey

Sally Oey

By |

Sally Oey’s group is studying massive star populations and the escape of ionizing radiation from starburst galaxies and super star clusters. The group is at the forefront of establishing a new paradigm for massive-star feedback, where superwinds from compact young star clusters fail to launch. Members have used numerical simulations and image processing techniques to investigate such conditions for allowing ionizing radiation to penetrate the dense gas in star-forming clouds and the interstellar medium in “green pea” galaxies and resolved nearby starbursts. The ionizing radiation may originate from massive binaries and their products, thus group members are carrying out data mining of observational surveys and binary population synthesis models to study how binarity manifests in stellar populations.

Elizabeth Bondi-Kelly

Elizabeth Bondi-Kelly

By |

My research interests lie broadly in the area of artificial intelligence (AI) for social impact, particularly spanning the fields of multi-agent systems and data science for conservation and public health.

Katie Skinner

Katie Skinner

By |

My research spans robotics, computer vision, and machine learning with a focus on enabling autonomy in dynamic, unstructured, or remote environments across field robotics applications (air, land, sea, and space). In particular, my group focuses on problems that rely on limited labeled data.