Anthony Vanky

By |

Anthony Vanky develops and applies data science and computational methods to design, plan, evaluate cities, emphasizing their applications to urban planning and design. Broadly, his work focuses on the domains of transportation and human mobility; social behaviors and urban space; policy evaluation; quantitative social sciences; and the evaluation of urban form. Through this work, he has extensively collaborated with public and private partners. In addition, he considers creative approaches toward data visualization, public engagement and advocacy, and research methods.

 

Anthony Vanky’s Cityways project analyzed 2.2 million trips from 135,000 people over one year to understand the factors that influence outdoor pedestrian path choice. Factors considered included weather, urban morphology, businesses, topography, traffic, the presence of green spaces, among others.

Dr. Amanda Kowalski

By |

Professor Kowalski’s recent research analyzes experiments and clinical trials with the goal of designing policies to target insurance expansions and medical treatments to individuals who stand to benefit from them the most. Her research has also explored the impact of previous Medicaid expansions, the Affordable Care Act, the Massachusetts health reform of 2006, and employer-sponsored health insurance plans. She has also used cutting-edge techniques to estimate the value of medical spending on at-risk newborns.

 

 

Wenhao Sun

By |

We are interested in resolving outstanding fundamental scientific problems that impede the computational materials design process. Our group uses high-throughput density functional theory, applied thermodynamics, and materials informatics to deepen our fundamental understanding of synthesis-structure-property relationships, while exploring new chemical spaces for functional technological materials. These research interests are driven by the practical goal of the U.S. Materials Genome Initiative to accelerate materials discovery, but whose resolution requires basic fundamental research in synthesis science, inorganic chemistry, and materials thermodynamics.

Matthew J Delano

By |

Obesity promotes type 2 diabetes (T2D) the 3rd leading cause of death in the United States and accounts for $237 billion healthcare cost. T2D and obesity promote infections that cause sepsis, the leading cause of mortality in the intensive care unit following traumatic injury. Despite advances in supportive care, sepsis mortality remains 25% and escalates over time. Survival from sepsis depends on emergency myelopoiesis of macrophages (MΦ) to clear bacteria and deescalate inflammation. Resolving inflammation requires MΦ polarization from pro-inflammatory M1 to anti-inflammatory MΦ states. The MΦ ability to polarize depends on the intrinsic plasticity inherited from hematopoietic stem and progenitor cells (HSPCs) during emergency myelopoiesis. Our published data in trauma and sepsis in mice and humans demonstrates that obesity and T2D alter HSPC myelopoiesis, inhibit MΦ plasticity and prevent M1Φ polarization to other functional MΦ states. However, the impact of altered MΦ myelopoiesis and restricted M1Φ polarity on sepsis pathogenesis is unknown. A critical need exists to understand the mechanisms by which obesity and T2D alter myelopoiesis, inhibit MΦ plasticity and prevent MΦ polarity to promote bacterial sepsis mortality. We hypothesize that obesity and T2D prime HSPC myelopoiesis to produce dysfunctional M1Φs incapable of bacterial clearance, and effective polarization which hinder inflammation resolution during sepsis and cause mortality. We will test the hypothesis with the following aims that, when completed, will fill the current knowledge void and improve sepsis survival. In Aim 1 we will determine the mechanisms in T2D and obesity that alter myelopoiesis in bacterial sepsis. The findings will reveal how obesity and T2D prime HSPCs and alter myelopoiesis to prevent MΦ polarity in mice and humans with sepsis. In Aim 2 we will identify the functional consequences of obese, T2D M1Φs unable to polarize to other activation states during bacterial sepsis. We will explore how restricted MΦ polarity effects immune cell responses and cytokine production to define how T2D and obesity impede inflammation resolution. The data generated will identify new pathways that promote aberrant myeloid production, restricted MΦ plasticity and prevent inflammation resolution during bacterial sepsis. Novel targeted therapies can then be developed for clinical implementation for bacterial eradication, wound healing and survival from sepsis in obesity and T2D.

Yuehao Bai

By |

My research interests lie in design and analysis of randomized controlled trials (RCTs), partial identification, identification and inference with multi-valued treatments and instruments, and quantile regression. In one recent paper I study the optimal stratified randomization procedure in RCTs, and found a certain kind of matched-pair design is optimal. In another paper (coauthored with Joe Romano and Azeem Shaikh), we provide asymptotically exact inference procedure for matched-pair designs. In another paper we study inference with moment inequalities whose dimension grows exponentially fast with the sample size. I also have a paper in which we study the sharp identified sets for various treatment effects with multi-valued instruments and multi-values treatments.

Amiyatosh Purnanandam

By |

My primary research is focused on measurement and monitoring of risks in banks, both at the individual bank level and at the level of financial system as a whole. In a recent paper, we have developed a high-dimension statistical approach to measure connectivity across different players in the financial sector. We implement our model using stock return data for US banks, insurance companies and hedge funds. Some of my early research has developed analytical tools to measure banks’ default risk using option pricing models and other tools of financial economics. These projects have often a significant empirical component that uses large financial datasets and econometric tools. Of late, I have been working on several projects related to the issue of equity and inclusion in financial markets. These papers use large datasets from financial markets to understand differences in the quantity and quality of financial services received by minority borrowers. A common theme across these projects is the issue of causal inference using state-of-the art tools from econometrics. Finally, some of ongoing research projects are related to FinTech with a focus on credit scoring and online lending.

Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Robert Manduca

By |

Professor Manduca’s research focuses on urban and regional economic development, asking why some cities and regions prosper while others decline, how federal policy influences urban fortunes, and how neighborhood social and economic conditions shape life outcomes. He studies these topics using computer simulations, spatial clustering methods, network analysis, and data visualization.

In other work he explores the consequences of rising income inequality for various aspects of life in the United States, using descriptive methods and simulations applied to Census microdata. This research has shown how rising inequality has lead directly to lower rates of upward mobility and increases in the racial income gap.

9.9.2020 MIDAS Faculty Research Pitch Video.

Screenshot from “Where Are The Jobs?” visualization mapping every job in the United States based on the unemployment insurance records from the Census LODES data. http://robertmanduca.com/projects/jobs.html

Salar Fattahi

By |

Today’s real-world problems are complex and large, often with overwhelmingly large number of unknown variables which render them doomed to the so-called “curse of dimensionality”. For instance, in energy systems, the system operators should solve optimal power flow, unit commitment, and transmission switching problems with tens of thousands of continuous and discrete variables in real time. In control systems, a long standing question is how to efficiently design structured and distributed controllers for large-scale and unknown dynamical systems. Finally, in machine learning, it is important to obtain simple, interpretable, and parsimonious models for high-dimensional and noisy datasets. Our research is motivated by two main goals: (1) to model these problems as tractable optimization problems; and (2) to develop structure-aware and scalable computational methods for these optimization problems that come equipped with certifiable optimality guarantees. We aim to show that exploiting hidden structures in these problems—such as graph-induced or spectral sparsity—is a key game-changer in the pursuit of massively scalable and guaranteed computational methods.

9.9.2020 MIDAS Faculty Research Pitch Video.

My research lies at the intersection of optimization, data analytics, and control.

Yulia Sevryugina

By |

Study of Pandemic Publishing: How Scholarly Literature is Affected by COVID-19 Pandemic
This project addresses the quality of recently published COVID-19 publications. With the COVID-19 pandemic, researchers publish a lot their research as preprints. And while preprints are an important development in scholarly publishing, they are works in progress that need further refinement to become a more rigorous final product. Scholarly publishers are also taking initiatives to accelerate publication process, for example, by asking reviewers to curtail requests for additional experiments upon revisions. Sacrificing rigor for haste inevitably increases the likelihood of article correction and retraction, leading to spread of false information within supposedly trustworthy sources that have a peer-reviewing process in place to ensure proper verification. I study the quality of COVID-19 related scholarly works by using CADRE’s datasets to identify signs of incoherency, irreproducibility, and haste.

9.9.2020 MIDAS Faculty Research Pitch Video.