Gen Li

By |

Dr. Gen Li is an Assistant Professor in the Department of Biostatistics. He is devoted to developing new statistical methods for analyzing complex biomedical data, including multi-way tensor array data, multi-view data, and compositional data. His methodological research interests include dimension reduction, predictive modeling, association analysis, and functional data analysis. He also has research interests in scientific domains including microbiome and genomics.

Novel tree-guided regularization methods can identify important microbial features at different taxonomic ranks that are predictive of the clinical outcome.

Yixin Wang

By |

Yixin Wang works in the fields of Bayesian statistics, machine learning, and causal inference, with applications to recommender systems, text data, and genetics. She also works on algorithmic fairness and reinforcement learning, often via connections to causality. Her research centers around developing practical and trustworthy machine learning algorithms for large datasets that can enhance scientific understandings and inform daily decision-making. Her research interests lie in the intersection of theory and applications.

Lia Corrales

By |

My PhD research focused on identifying the size and mineralogical composition of interstellar dust through X-ray imaging of dust scattering halos to X-ray spectroscopy of bright objects to study absorption from intervening material. Over the course of my PhD I also developed an open source, object oriented approach to computing extinction properties of particles in Python that allows the user to change the scattering physics models and composition properties of dust grains very easily. In many cases, the signal I look for from interstellar dust requires evaluating the observational data on the 1-5% level. This has required me to develop a deep understanding of both the instrument and the counting statistics (because modern-day X-ray instruments are photon counting tools). My expertise led me to a postdoc at MIT, where I developed techniques to obtain high resolution X-ray spectra from low surface brightness (high background) sources imaged with the Chandra X-ray Observatory High Energy Transmission Grating Spectrometer. I pioneered these techniques in order to extract and analyze the high resolution spectrum of Sgr A*, our Galaxy’s central supermassive black hole (SMBH), producing a legacy dataset with a precision that will not be replaceable for decades. This dataset will be used to understand why Sgr A* is anomalously inactive, giving us clues to the connection between SMBH activity and galactic evolution. In order to publish the work, I developed an open source software package, pyXsis (github.com/eblur/pyxsis) in order to model the low signal-to-noise spectrum of Sgr A* simultaneously with a non-physical parameteric model of the background spectrum (Corrales et al., 2020). As a result of my vocal advocacy for Python compatible software tools and a modular approach to X-ray data analysis, I became Chair for HEACIT (which stands for “High Energy Astrophysics Codes, Interfaces, and Tools”), a new self-appointed working group of X-ray software engineers and early career scientists interested in developing tools for future X-ray observatories. We are working to identify science cases that high energy astronomers find difficult to support with the current software libraries, provide a central and publicly available online forum for tutorials and discussion of current software libraries, and develop a set of best practices for X-ray data analysis. My research focus is now turning to exoplanet atmospheres, where I hope to measure absorption from molecules and aerosols in the UV. Utilizing UM access to the Neil Gehrels Swift Observatory, I work to observe the dip in a star’s brightness caused by occultation (transit) from a foreground planet. Transit depths are typically <1%, and telescopes like Swift were not originally designed with transit measurements (i.e., this level of precision) in mind. As a result, this research strongly depends on robust methods of scientific inference from noisy datasets.

cirx1_heinz_pretty_image

As a graduate student, I attended some of the early “Python in Astronomy” workshops. While there, I wrote Jupyter Notebook tutorials that helped launch the Astropy Tutorials project (github.com/astropy/astropy-tutorials), which expanded to Learn Astropy (learn.astropy.org), for which I am a lead developer. Since then, I have also become a leader within the larger Astropy collaboration. I have helped develop the Astropy Project governance structure, hired maintainers, organized workshops, and maintained an AAS presence for the Astropy Project and NumFocus (the non-profit umbrella organization that works to sustain open source software communities in scientific computing) for the last several years. As a woman of color in a STEM field, I work to clear a path by teaching the skills I have learned along the way to other underrepresented groups in STEM. This year I piloted WoCCode (Women of Color Code), an online network and webinar series for women from minoritized backgrounds to share expertise and support each other in contributing to open source software communities.

Wei Lu

By |

Dr. Lu brings expertise in machine learning, particularly integrating human knowledge into machine learning and explainable machine learning. He has applied machine learning in a range of domain applications, such as autonomous driving and machine learning for optimized design and control of energy storage systems.

Andrew Gronewold

By |

Dr. Andrew Gronewold, P.E., is an Associate Professor with the School for Environment and Sustainability (SEAS) at the University of Michigan. He also holds adjunct faculty appointments in the University of Michigan’s Department of Civil and Environmental Engineering, and the Department of Earth and Environmental Sciences. Dr. Gronewold conducts research through a range of hydrological science projects that explore methods for quantifying and communicating uncertainties arising within long-term hydrological monitoring networks and data, and incorporating those uncertainties into models and risk-based water resources management decisions. Much of his recent research has focused on monitoring, analyzing, and forecasting the long-term water budget and water levels of the Laurentian Great Lakes.


Accomplishments and Awards

Anne Fernandez

By |

Dr. Fernandez is a clinical psychologist with extensive training in both addiction and behavioral medicine. She is the Clinical Program Director at the University of Michigan Addiction Treatment Service. Her research focuses on the intersection of addiction and health across two main themes: 1) Expanding access to substance use disorder treatment and prevention services particularly in healthcare settings and; 2) applying precision health approaches to addiction-related healthcare questions. Her current grant-funded research includes an NIH-funded randomized controlled pilot trial of a preoperative alcohol intervention, an NIH-funded precision health study to leverage electronic health records to identify high-risk alcohol use at the time of surgery using natural language processing and other machine-learning based approaches, a University of Michigan funded precision health award to understand and prevent new persistent opioid use after surgery using prediction modeling, and a federally-funded evaluation of the state of Michigan’s substance use disorder treatment expansion.


Accomplishments and Awards

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.

Lana Garmire

Lana Garmire

By |

My research interest lies in applying data science for actionable transformation of human health from the bench to bedside. Current research focus areas include cutting edge single-cell sequencing informatics and genomics; precision medicine through integration of multi-omics data types; novel modeling and computational methods for biomarker research; public health genomics. I apply my biomedical informatics and analytical expertise to study diseases such as cancers, as well the impact of pregnancy/early life complications on later life diseases.


Accomplishments and Awards

Arpan Kusari

By |

Dr. Arpan Kusari has joined UMTRI as an Assistant Research Scientist, a position where he will bring his cutting-edge industry experience. Dr. Kusari has spent five years at Ford Motor Company researching exclusively on making autonomous vehicles safe and viable, working collaboratively with researchers from MIT and University of Michigan to advance the state-of-the-art knowledge in autonomous vehicles. His research interest spans through the spheres of sensing and perception; and decision-making and control, in the domain of autonomous vehicles. In the sensing and perception realm, his interests lie in uncertainty quantification and fault tolerance of a generic sensor suite. Dr. Kusari is also interested in utilizing noise reduction methods for designing cost-effective low SNR (signal-to-noise ratio) LiDARS. In decision making and control, he is focused on creating a robust framework capable of handling the uncertainty stemming from other road users’ behavior. In that regard, Dr. Kusari is pursuing development of methods for increasing the efficiency and robustness of probabilistic formalisms such as reinforcement learning and evolutionary algorithms to safely navigate the dynamic environment. His doctoral research was in LiDAR mapping in the areas of sensor calibration, precise estimation of earthquake displacement and uncertainty quantification in the point cloud.

Camille Avestruz

By |

Prof. Avestruz is a computational cosmologist leading the ALCCA (Avestruz Lab for Computational Cosmology and Astrophysics) research group. Her research group uses simulations to model, predict, and interpret observed large-scale cosmic structures. Her primary focus is to understand the evolution of galaxy clusters. These are the most massive gravitationally collapsed structures in our universe, comprised of hundreds to thousands of galaxies. Other aspects of her work prepare for the next decade of observations, which will produce unprecedented volumes of data. With the Rubin Observatory’s Legacy Survey of Space and Time, Avestruz’ group is leading software development efforts within the Dark Energy Science Collaboration including applications of machine learning in cosmology.