Climate Research, Earth Science
Algorithms, Classification, Data Management, Data Visualization, Image Data Processing and Analysis, Pattern Analysis and Classification, Spatio-Temporal Data Analysis, Time Series Analysis

Ashley Payne

Assistant Professor

Climate and Space Sciences and Engineering

I am interested in using observations, reanalysis, and numerical modeling to investigate the impacts, characteristics and climatology of extreme precipitation events. I use process-based studies for model evaluation and employ simple experiments to develop a mechanistic understanding of weather extremes and their interaction with climate.

A snapshot of an atmospheric river using MERRA-2 reanalysis. The shading shows total precipitable water (cm) and the contours show the magnitude of integrated vapor transport. Atmospheric rivers (ARs) are narrow and elongated pathways of anomalously strong horizontal water vapor transport in the lower portions of the atmosphere. They are found over most major ocean basins and are generally visible in integrated water vapor imagery poleward of the tropics. Their characteristics, such as landfall location, intensity, and duration, vary on intraseasonal and interannual timescales. This variability directly affects populations through impacts to water resources, hydrological extremes, and potential to contribute to compound hazards, such as the incidence of mudslides in regions recently impacted by wildfire.