John Silberholz

By |

Most of my research related to data science involves decision making around clinical trials. In particular, I am interested in how databases of past clinical trial results can inform future trial design and other decisions. Some of my work has involved using machine learning and mathematical optimization to design new combination therapies for cancer based on the results of past trials. Other work has used network meta-analysis to combine the results of randomized controlled trials (RCTs) to better summarize what is currently known about a disease, to design further trials that would be maximally informative, and to study the quality of the control arms used in Phase III trials (which are used for drug approvals). Other work combines toxicity data from clinical trials with toxicity data from other data sources (claims data and adverse event reporting databases) to accelerate detection of adverse drug reactions to newly approved drugs. Lastly, some of my work uses Bayesian inference to accelerate clinical trials with multiple endpoints, learning the link between different endpoints using past clinical trial results.

Peter Lenk

By |

Prof. Lenk develops Bayesian models that disaggregate data to address individuals.  He also studies Bayesian nonparametric methods and currently consider shape constraints.  Prof. Lenk teaches and uses data mining methods such as recursive partition and neural networks.

Jun Li

By |

Jun Li, PhD, is Assistant Professor in the department of Technology and Operations in the Ross School of Business at the University of Michigan, Ann Arbor.

Jun Li’s main research interests are empirical operations management and business analytics, with special emphases on revenue management, pricing, consumer behavior, economic and social networks. She has worked extensively with large-scale data, including transactions, pricing, inventory and capacity, consumer online search and click stream data, supply chain relationships and disruptions, clinical and healthcare claims. She is the Winner  of INFORMS Revenue Management and Pricing Practice Award for her close collaboration with retailing practitioners in implementing best response pricing algorithms. Her paper on airline pricing and consumer behavior is the finalist for Best Management Science Papers in Operations Management 2012 to 2014. She is also the principal investigator of a National Science Foundation funded project: “Gaining Visibility Into Supply Network Risks Using Large-Scale Textual Analysis”. Her work has enjoyed coverage by The Economist, New York Times and Forbes.

Supply Chain Risk Events

Supply Chain Risk Events