Robert Manduca

By |

Professor Manduca’s research focuses on urban and regional economic development, asking why some cities and regions prosper while others decline, how federal policy influences urban fortunes, and how neighborhood social and economic conditions shape life outcomes. He studies these topics using computer simulations, spatial clustering methods, network analysis, and data visualization.

In other work he explores the consequences of rising income inequality for various aspects of life in the United States, using descriptive methods and simulations applied to Census microdata. This research has shown how rising inequality has lead directly to lower rates of upward mobility and increases in the racial income gap.

9.9.2020 MIDAS Faculty Research Pitch Video.

Screenshot from “Where Are The Jobs?” visualization mapping every job in the United States based on the unemployment insurance records from the Census LODES data. http://robertmanduca.com/projects/jobs.html

Jeffrey Morenoff

By |

Jeffrey D. Morenoff is a professor of sociology, a research professor at the Institute for Social Research (ISR), and a professor of public policy at the Ford School. He is also director of the ISR Population Studies Center. Professor Morenoff’s research interests include neighborhood environments, inequality, crime and criminal justice, the social determinants of health, racial/ethnic/immigrant disparities in health and antisocial behavior, and methods for analyzing multilevel and spatial data.

Andrei Boutyline

By |

Cultural systems are fundamentally structural phenomena, defined by patterns of relations between elements of public representations and individual behaviors and cognitions. However, because such systems are difficult to capture with traditional empirical approaches, they usually remain understudied. In my work, I draw on network analysis, statistics, and computer science to create novel approaches to such analyses, and on cognitive science to theorize the objects of these investigations. Broader questions that interest me are: how are different cultural elements interrelated with one another? What is the relationship between public cultural representations and individual cognition and behavior? And how can we capture the structure of these interrelationships across large social and time scales? Methodologically, I am currently focused no developing applications of word embeddings and other natural language processing methods to sociological questions about cultural change.

Changing gender connotations of intelligence and studiousness throughout the latter half of the 20th century measured using word embeddings. Intelligence gained a masculine gender coding just as studiousness gained a masculine one. Scores are z-scored average cosine similarities between sets of keywords and a gender dimension. Data source: Corpus of Historical American English.

Elizabeth Bruch

By |

 

People’s behavior is often contingent on what other people are doing or have done. In dating and job markets, for example, each person’s choices limit what opportunities are available to others. A classic problem in sociology is explaining the relationship between individuals’ actions and larger-scale social patterns. My strategy is to use computer models of how people’s choices co-evolve with aspects of their environment—known as agent-based models (ABMs)—to determine what behavioral or demographic features are important for understanding social processes. I then use statistical models to assess to what degree these features exist in the real world. Substantively, most of my work examines the drivers of neighborhood segregation. More recently, I embarked on a study of how mate choice strategies shape (and are shaped by) dating, marriage, and affair markets.

With Fred Feinberg (UM Marketing and Statistics), I am also exploring how new data sources can be combined with choice models. The vast amounts of activity data from sources such as cell phones and the Internet make it possible to study human behavior with an unparalleled richness of detail. Such “big data” are interesting in large part because they are behavioral data that allow us to observe how people explore their environment, engage in novel or habitual behaviors, interact with others, and learn from past experiences. In ongoing work, we show how decision processes regarding mate choice can be extracted from online dating activity data.

 

 

Jason Owen-Smith

By |

Professor Owen-Smith conducts research on the collective dynamics of large scale networks and their implications for scientific and technological innovation and surgical care. He is the executive director of the Institution for Research on Innovation and Science (IRIS, http://iris.isr.umich.edu).  IRIS is a national consortium of research universities who share data and support infrastructure designed to support research to understand, explain, and eventually improve the public value of academic research and research training.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

One year snapshot of the collaboration network of a single large research university campus. Nodes are individuals employed on sponsored project grants, ties represent copayment on the same grant account in the same year. Ties are valued to reflect the number of grants in common. Node size is proportional to a simple measure of betweenness centrality and node color represents the results of a simple (walktrip) community finding algorithm. The image was created in Gephi.

Gerald Davis

By |

My research is broadly concerned with corporate governance and the effects of finance on society. Recent writings examine how ideas about corporate social responsibility have evolved to meet changes in the structures and geographic footprint of multinational corporations; whether “shareholder capitalism” is still a viable model for economic development; how income inequality in an economy is related to corporate size and structure; why theories about organizations do (or do not) progress; how architecture shapes social networks and innovation in organizations; why stock markets spread to some countries and not others; and whether there exist viable organizational alternatives to shareholder-owned corporations in the United States. Recent publications are available at http://webuser.bus.umich.edu/gfdavis/articles.htm.

Ties Among the Fortune 1000 Corporate Boards

Ties Among the Fortune 1000 Corporate Boards