Tanya Rosenblat

Tanya Rosenblat

By |

My main research interest lies in experimental economics, social networks and social learning. I am particularly interested in how people aggregate information from social networks and news sources and form posterior beliefs. I use regression techniques to uncover causal relationships as well as classification to reduce the dimensionality of data.

Some of my recent research looks at how people update beliefs when they derive direct utility from beliefs. This occurs, for example, when people receive feedback on their ability. They often seem to weigh positive information more strongly than negative information. I am also interested in understanding differences between statistical and anecdotal reasoning. Under statistical reasoning, people have known objectives and they update beliefs through Bayes’ rule. Under anecdotal reasoning, people recall anecdotes that are relevant for forming a belief about a new objective that has not been encountered before. In these situations, memory recall and recognition are important to understand the formation of beliefs.

Mean absolute belief revisions by prior belief in response to positive/negative information. Prior deciles are ordered in increasing (decreasing) order for positive (negative) information. Bayesian should have equal responses.

Barbara Jane Ericson

By |

I have been creating free and interactive ebooks for introductory computing courses on the open-source Ruenstone platform and analyzing the clickstream data from those courses to improve the ebooks and instruction. In particular, I am interested in using educational data mining to close the feedback loop and improve the instructional materials. I am also interested in learner sourcing to automatically generate and improve assessments. I have been applying principles from educational psychology such as worked examples plus low cognitive load practice to improve instruction. I have been exploring mixed-up code (Parsons) problems as one type of practice. I created two types of adaptation for Parsons problems: intra-problem and inter-problem. In intra-problem adaptation, if the learner is struggling to solve the current problem it can dynamically be made easier. In inter-problem adaptation the difficulty of the next problem is based on the learner’s performance on the previous problem.

Ron Eglash

Ron Eglash

By |

Societal control tends to be implemented from the top-down, whether that is a private corporation or a communist state. How can data science empower from the bottom-up? Computational technologies can be designed to replace extractive economies with generative cycles. My research includes AI for the artisanal economy; computational modeling of Indigenous practices; and other means for putting the power of data science in the service of generative justice.

Student moving from her knowledge of braiding algorithms, to her program for braiding patterns, to a mannequin head for installation in adult braider’s shops. https://csdt.org/culture/cornrowcurves/index.html

Libby Hemphill

By |

Dr. Hemphill studies conversations in social media and aims to promote just access to social media spaces and their data. She uses computational approaches to modeling political topics, predicting and addressing toxicity in online discussions, and tracing linguistic adaptations among extremists. She also studies digital data curation and is especially interested in ways to measure and model data reuse so that we can make informed decisions about how to allocate data resources.


Accomplishments and Awards

 


Research Highlights

Misha Teplitskiy

By |

My research is at the intersection of Science of Science + Sociology of Organizations + Computational Social Science. I study how social and organizational factors affect scientific discovery. I am especially interested in evaluation practices in science, and whether they promote or stifle innovation. My approach relies primarily on field experiments — interventions in scientific competitions and other settings — and applying computational tools to large-scale observational data.

Current research projects include:
1. Cumulative advantage in science: Do metrics like citation counts and impact factors proxy quality and influence, or help create them?
2. Biases in expert evaluation: Do groups of experts make decisions differently from individuals?
3. Science and the media: What research is picked up by the media, and how is it covered?

Showing how often a paper has been cited causes scientists to perceive it as of lower quality, unless that paper is among the 10% most highly cited.


Accomplishments and Awards

Kentaro Toyama

By |

Kentaro Toyama is W. K. Kellogg Professor of Community Information at the University of Michigan School of Information and a fellow of the Dalai Lama Center for Ethics and Transformative Values at MIT. He is the author of “Geek Heresy: Rescuing Social Change from the Cult of Technology.” Toyama conducts interdisciplinary research to understand how the world’s low-income communities interact with digital technology and to invent new ways for technology to support their socio-economic development, including computer simulations of complex systems for policy-making. Previously, Toyama did research in artificial intelligence, computer vision, and human-computer interaction at Microsoft and taught mathematics at Ashesi University in Ghana.

Interacting with children at a Seva Mandir school in Rajasthan, India.


Accomplishments and Awards