Jessica K. Camp

By |

Jessica K. Camp, PhD, is Assistant Professor of social work in the Department of Health and Health Services at the University of Michigan, Dearborn.

Her research focuses on using large nationally representative data from the United States and internationally (SIPP, ACS, GSOEP) to explore trends in poverty and inequality. Specifically, I examine ways that marginalized and hyper-marginalized groups experience economic disparity and labor market exclusion. My most recent completed study showed how welfare reform can have a powerful impact on the well-being of working women, especially women with vulnerabilities. My area of expertise as a data analyst is in complex samples, regression, and longitudinal models. I am hoping my future work will inform ways that “Big Data” can be used in social work research.

Jie Shen

Jie Shen

By |

One of my research interests is in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. My team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Another research focus is on the information fusion of large-scale data from autonomous driving. Our research is funded by China Natural Science Foundation with focus on (1) laser-based perception in degraded visual environment, (2) 3D pattern recognition with dynamic, incomplete, noisy point clouds, (3) real-time image processing algorithms in degraded visual environment, and (4) brain-computer interface to predict the state of drivers.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data

Mahesh Agarwal

Mahesh Agarwal

By |

Prof. Agarwal’s is primarily interested in number theory, in particular in p-adic L-functions, Bloch-Kato conjecture and automorphic forms. His secondary research interests are polynomials, geometry and math education, Machine Learning, and healthcare analytics.