Briana Mezuk

By |

My research program uses epidemiologic methods to examine the interrelationships between mental and physical health over the lifespan. A core feature of my research is the integration of conceptual and analytical approaches, methods, and models from social science, including natural language processing, and clinical/health disciplines with the aim of arriving at a more nuanced and comprehensive understanding of the ways in which mental and physical health interrelate. The goal of this work is to inform interventions that reflect an integrative approach to health.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021


Jodyn Platt

By |

Our team leads research on the Ethical, Legal, and Social Implications (ELSI) of learning health systems and related enterprises. Our research uses mixed methods to understand policies and practices that make data science methods (data collection and curation, AI, computable algorithms) trustworthy for patients, providers, and the public. Our work engages multiple stakeholders including providers and health systems, as well as the general public and minoritized communities on issues such as AI-enabled clinical decision support, data sharing and privacy, and consent for data use in precision oncology.

J. Brian Byrd

By |

My group investigates hypertension using a principally patient-oriented approach, with key aspects of our work being collaborative with data scientists. For example, I collaborated with Casey Greene, PhD, computational biologist, on a project using generative adversarial neural networks to create a privacy-preserving dataset derivative of the SPRINT hypertension clinical trial. The work incorporated concepts from the differential privacy field, and the intent is to make clinical trial data sharing more feasible.

Marie O’Neill

By |

My research interests include health effects of air pollution, temperature extremes and climate change (mortality, asthma, hospital admissions, birth outcomes and cardiovascular endpoints); environmental exposure assessment; and socio-economic influences on health.
Data science tools and methodologies include geographic information systems and spatio-temporal analysis, epidemiologic study design and data management.

Carina Gronlund

By |

As an environmental epidemiologist and in collaboration with government and community partners, I study how social, economic, health, and built environment characteristics and/or air quality affect vulnerability to extreme heat and extreme precipitation. This research will help cities understand how to adapt to heat, heat waves, higher pollen levels, and heavy rainfall in a changing climate.

Allison Earl

By |

My primary research interests are understanding the causes and consequences of biased selection and attention to persuasive information, particularly in the context of health promotion. Simply stated, I am interested in what we pay attention to and why, and how this attention (or inattention) influences attitudinal and behavioral outcomes, such as persuasion and healthy behavior. In particular, my work has addressed disparities in attention to information about HIV prevention for African-Americans compared to European-Americans as a predictor of disparities in health outcomes. I am also exploring barriers to attention to health information by African-Americans, including the roles of stigma, shame, fear, and perceptions of irrelevance. At a more basic attitudes and persuasion level, I am currently pursuing work relevant to how we select information for liked versus disliked others, and how the role of choice influences how we process information we agree versus disagree with.

Kevin Bakker

By |

Kevin’s research is focused on to identifying and interpreting the mechanisms responsible for the complex dynamics we observe in ecological and epidemiological systems using data science and modeling approaches. He is primarily interested in emerging and endemic pathogens, such as SARS-CoV-2, influenza, vampire bat rabies, and a host of childhood infectious diseases such as chickenpox. He uses statistical and mechanistic models to fit, forecast, and occasionally back-cast expected disease dynamics under a host of conditions, such as vaccination or other control mechanisms.

Anne Fernandez

By |

Dr. Fernandez is a clinical psychologist with extensive training in both addiction and behavioral medicine. She is the Clinical Program Director at the University of Michigan Addiction Treatment Service. Her research focuses on the intersection of addiction and health across two main themes: 1) Expanding access to substance use disorder treatment and prevention services particularly in healthcare settings and; 2) applying precision health approaches to addiction-related healthcare questions. Her current grant-funded research includes an NIH-funded randomized controlled pilot trial of a preoperative alcohol intervention, an NIH-funded precision health study to leverage electronic health records to identify high-risk alcohol use at the time of surgery using natural language processing and other machine-learning based approaches, a University of Michigan funded precision health award to understand and prevent new persistent opioid use after surgery using prediction modeling, and a federally-funded evaluation of the state of Michigan’s substance use disorder treatment expansion.

Michael Rubyan

By |

My research focuses on the development and evaluation of novel interventions that leverage emerging technologies to train members of the healthcare workforce around adhering to guidelines. I study how to scale custom designed teaching and learning platforms and evaluate their use to motivate effective communication and dissemination of evidence based practice. Other emphases of my work include health policy literacy, translation and communication of health services research, and improving health system literacy in urban communities. I have developed and evaluated numerous web based educational interventions that employ the “flipped classroom” design with an emphasis on understanding the data and analytics that guide successful implementation and promote high fidelity for members of the healthcare workforce. As an implementation scientist, I rely on the integration of data and analytics to understand what motivates successful program implementation.

In addition to the development of these platforms, I have extensive experience developing and evaluating online, hybrid residential, residential courses, and MOOCs related to healthcare management, non-profit management, healthcare finance, and health economics that employ engaging lessons and modules, interactive graphics, and a blended learning format to aid health professions students, and both undergraduate and graduate public health students in understanding the healthcare system. My MOOC entitled “Understanding and Improving the U.S. Health Care System” has been taken by over 5,000 learners and is characterized by the use of “big data” to understand how future healthcare providers learn health policy.