Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Jason Goldstick

By |

I am a statistician and my research focuses on applied public health work in a variety of fields specific to injury prevention, including substance use, violence, motor vehicle crash, and traumatic brain injury. Within those applications, I apply analytic methods for longitudinal data analysis, spatial and spatio-temporal data analysis, and predictive modeling (e.g., for clinical prediction of future injury risk applied to injuries like stroke, Benzodiazepine overdose, and firearm injury). I am also MPI of the System for Opioid Overdose Surveillance–a near-real-time system for monitoring fatal and nonfatal overdoses in Michigan; the system generates automated spatial and temporal summaries of recent overdose trends.

Gongjun Xu

By |

Dr. Gongjun Xu is an assistant professor in the Department of Statistics at the University of Michigan. Dr. Xu’s research interests include latent variable models, psychometrics, cognitive diagnosis modeling, high-dimensional statistics, and semiparametric statistics.

Jun Zhang

By |

Jun Zhang, PhD, is Professor of Mathematics, Statistics, and Psychology in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor.

Prof. Zhang develops algebraic and geometric methods for data analysis. Algebraic methods are based on theories of topology and partially ordered sets (in particular lattice theory); an example being formal concept analysis (FCA). Geometric methods include Information Geometry, which studies the manifold of probability density functions. He interests include mathematical psychology and computational neuroscience, broadly defined to include neural network theory and reinforcement learning, dynamical analysis of nervous system (single neuron activity and event-related potential), computational vision, choice-reaction time model, Bayesian decision theory and game theory.