Explore ARCExplore ARC

Samuel K Handelman

By |

Samuel K Handelman, Ph.D., is Research Assistant Professor in the department of Internal Medicine, Gastroenterology, of Michigan Medicine at the University of Michigan, Ann Arbor. Prof. Handelman is focused on multi-omics approaches to drive precision/personalized-therapy and to predict population-level differences in the effectiveness of interventions. He tends to favor regression-style and hierarchical-clustering approaches, partially because he has a background in both statistics and in cladistics. His scientific monomania is for compensatory mechanisms and trade-offs in evolution, but he has a principled reason to focus on translational medicine: real understanding of these mechanisms goes all the way into the clinic. Anything less that clinical translation indicates that we don’t understand what drove the genetics of human populations.

Kevin Dombkowski

By |

Kevin J. Dombkowski, DrPH., MS, is Research Professor with the Child Health Evaluation and Research (CHEAR) Center within the University of Michigan Department of Pediatrics.   He is a health services researcher working extensively with public health information systems and large administrative claims databases.  

Kevin’s primary research focus is conducting population-based interventions aimed at improving the health of children, especially those with chronic conditions.  Much of his work has focused on evaluating the feasibility and accuracy of using administrative claims data to identify children with chronic conditions by linking these data with clinical and public health systems.  Many of these projects have linked claims, immunization registries, newborn screening, birth records and death records to conduct population-based evaluations of health services.  He has also applied these approaches to assess the statewide prevalence of chronic conditions such as asthma, sickle cell disease, and inflammatory bowel disease in Michigan as well as other states.  Kevin is currently collaborating with Michigan State University on the design and development of the Flint Lead Exposure Registry (FLExR) information architecture.

Kevin’s research interests also include registry-based interventions to improve the timeliness of vaccinations through automated reminder and recall systems.  He has led numerous collaborations with the Michigan Department of Health and Human Services (MDHHS), including several CDC-funded initiatives using the Michigan Care Improvement Registry (MCIR).  Through this collaboration, Kevin tested a statewide intervention aimed at increasing influenza vaccination among children with chronic conditions during the 2009 influenza pandemic.  Kevin is currently collaborating with MDHHS to evaluate MCIR data quality as immunization providers across Michigan adopt real-time, bi-directional messaging between electronic health records and MCIR.   He is conducting a similar statewide evaluation as new messaging protocols are adopted by electronic laboratory systems for reporting blood lead testing results to MDHHS.

Rie Suzuki

By |

Dr. Suzuki is a behavioral scientist and has major research interests in examining and intervening mediational social determinants factors of health behaviors and health outcomes across lifespan. She analyzes the National Health Interview Survey, Medical Expenditure Panel Survey, National Health and Nutrition Examination Survey as well as the Flint regional medical records to understand the factors associating with poor health outcomes among people with disabilities including children and aging.

Romesh P. Nalliah

By |

Dr. Nalliah’s research expertise is process evaluation. He has studied various healthcare processes, educational processes and healthcare economics. Dr. Nalliah’s research studies were the first time nationwide data was used to highlight emergency room resource utilization for managing dental conditions in the United States. Dr. Nalliah is internationally recognized as a pioneer in the field of nationwide hospital dataset research for dental conditions and has numerous publications in peer reviewed journals. After completing a masters degree at Harvard School of Public Health, Dr. Nalliah’s interests have expanded and he has studied various public health issues including sports injuries, poisoning, child abuse, motor vehicle accidents and surgical processes (like stem cell transplants, cardiac valve surgery and fracture reduction). National recognition of his expertise in these broader topics of medicine have given rise to opportunities to lecture to medical residents, nurse practitioners, students in medical, pharmacy and nursing programs about oral health. This is his passion- that his research should inform an evolution of health education curriculum and practice.

Dr. Nalliah’s professional mission is to improve healthcare delivery systems and he is interested in improving processes, minimizing inefficiencies, reducing healthcare bottlenecks, increasing quality, and increase task sharing which will lead to a patient-centered, coherent healthcare system. Dr. Nalliah’s research has identified systems constraints and his goal is to influence policy and planning to break those constraints and improve healthcare delivery.

Jeremy M G Taylor

By |

Jeremy Taylor, PhD, is the Pharmacia Research Professor of Biostatistics in the School of Public Health and Professor in the Department of Radiation Oncology in the School of Medicine at the University of Michigan, Ann Arbor. He is the director of the University of Michigan Cancer Center Biostatistics Unit and director of the Cancer/Biostatistics training program. He received his B.A. in Mathematics from Cambridge University and his Ph.D. in Statistics from UC Berkeley. He was on the faculty at UCLA from 1983 to 1998, when he moved to the University of Michigan. He has had visiting positions at the Medical Research Council, Cambridge, England; the University of Adelaide; INSERM, Bordeaux and CSIRO, Sydney, Australia. He is a previously winner of the Mortimer Spiegelman Award from the American Public Health Association and the Michael Fry Award from the Radiation Research Society. He has worked in various areas of Statistics and Biostatistics, including Box-Cox transformations, longitudinal and survival analysis, cure models, missing data, smoothing methods, clinical trial design, surrogate and auxiliary variables. He has been heavily involved in collaborations in the areas of radiation oncology, cancer research and bioinformatics.

I have broad interests and expertise in developing statistical methodology and applying it in biomedical research, particularly in cancer research. I have undertaken research  in power transformations, longitudinal modeling, survival analysis particularly cure models, missing data methods, causal inference and in modeling radiation oncology related data.  Recent interests, specifically related to cancer, are in statistical methods for genomic data, statistical methods for evaluating cancer biomarkers, surrogate endpoints, phase I trial design, statistical methods for personalized medicine and prognostic and predictive model validation.  I strive to develop principled methods that will lead to valid interpretations of the complex data that is collected in biomedical research.

Michael Elliott

By |

Michael Elliott is Professor of Biostatistics at the University of Michigan School of Public Health and Research Scientist at the Institute for Social Research. Dr. Elliott’s statistical research interests focus around the broad topic of “missing data,” including the design and analysis of sample surveys, casual and counterfactual inference, and latent variable models. He has worked closely with collaborators in injury research, pediatrics, women’s health, and the social determinants of physical and mental health. Dr. Elliott serves as an Associate Editor for the Journal of the American Statistical Association. He is currently serving as a co-investigator on the MIDAS-affiliated Reinventing Urban Transportation and Mobility project, working to develop methods to improve the representativeness of naturalistic driving data.

Hongwei Xu

By |

My substantive research interest is to understand the role of geography in shaping population health. Towards this end, my methodological and data science interests are twofold. First, I seek to develop and apply spatial statistical methods to model individual- and area-level health and diseases by using survey data and government statistics. Second, in light of the advance in GIS techniques and the increasingly accessible spatial data from various sources, I am exploring new approaches to integrate traditional geo-referenced survey data with non-traditional spatial data (e.g., remote sensing data, satellite data, Google search) to reduce measurement errors in demographic health research.

Pamela Davis-Kean

By |

Pamela Davis-Kean, PhD, is Professor of Psychology, College of Literature, Science, and the Arts, and Research Professor, Survey Research Center and Research Center for Group Dynamics, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Davis-Kean is the Director of the Population, Neurodevelopment, and Genetics program at the Institute for Social Research. This group examines the complex transactions of brain, biology, and behavior as children and families develop across time. She is interested in both micro (brain and biology) and macro (family and socioeconomic conditions) aspects of development to understand the full developmental story of individuals.  Her primary focus in this area is how stress relates to family socioeconomic status and how that translates to parenting beliefs and behaviors that influence the development of children.

Kerby Shedden

By |

Kerby Shedden has broad interests involving applied statistics, data science and computing with data.  Through his work directing the data science consulting service he has worked in a wide variety of application domains including numerous areas within health science, social science, and transportation research.  A current major focus is development of software tools that exploit high performance computing infrastructure for statistical analysis of health records, and sensor data from vehicles and road networks.

Jack D. Kalbfleisch

By |

Dr. Kalbfleisch is a Professor of Biostatistics and Statistics at the University of Michigan, Ann Arbor. He served as chair of the Department of Biostatistics, School of Public Health, from 2002 to 2007 and as Director of the Kidney Epidemiology and Cost Center from 2008 to 2011. He received his Ph.D. in statistics in 1969 from the University of Waterloo. He was an assistant professor of statistics at the State University of New York at Buffalo (1970-73) and on faculty at the University of Waterloo (1973-2002). At Waterloo, he served as chair of the Department of Statistics and Actuarial Science (1984-1990) and as dean of the faculty of Mathematics (1990-1998). He has held visiting appointments as Professor at the University of Washington, the University of California at San Francisco, the University of Auckland, Fred Hutchinson Cancer Research Center and the National University of Singapore. He has interests in and has publised in various areas of statistics and biostatistics including life history and survival analysis, likelihood methods of inference, bootstrapping and estimating equations, mixture and mixed effects models and medical applications, particularly in the area of renal disease and organ transplantation. Dr. Kalbfleisch is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. He is also an elected member of the International Statistical Institute, a Fellow of the Royal Society of Canada and a Gold Medalist of the Statistical Society of Canada. He also received the Distinguished Research Award from the UM School of Public Health in 2011.

A primary research interest is in the development of models and methods for analyzing failure time or event history data. Applications of this work arise in many areas including epidemiology, medicine, demography and engineering. In event history data, interest centers on the timing and occurrence of various kinds of events such as, for example, repeated infections or recurrences of disease, or other sequences of events that may occur during a study period. I have been particularly interested in situations in which only partial data or data subject to sampling bias are available.

In recent years, I have been working on statistical aspects of problems associated with End Stage Renal Disease and solid organ transplantation. The Kidney Epidemiology and Cost Center has many projects associated with these including various projects funded through the Centers for Medicare and Medicaid Services. This  provides a rich area of application where statistical methods and developments play a substantial role in defining public policy. I am particularly interested in the development of appropriate methods for the use of such data in profiling and/or ranking medical providers.  

I have recently worked on the optimization and simulation of kidney paired donation programs. In these, candidates in need of a kidney transplant who have a willing but incompatible living donor are entered into a pool and we seek exchanges of donors to overcome incompatibilities. Added to this is the potential for non-directed donors who can give a kidney to one member of the pool and hence create a chain of transplants. Our methods use integer programming methods to create flexible allocation schemes that have the potential to provide substantial increases in the number of transplants achieved.