Davon Norris

By |

I try to understand how our tools for determining what is valuable, worthwhile, or good are implicated in patterns of inequality with an acute concern for racial inequality. Often, this means my work investigates the functioning and consequences of a range of scores or ratings, from the less complex government credit ratings to the extremely complex algorithmic scores like consumer credit scores.

In related work, as a part of a multi-university team of researchers, I am using administrative credit report data from one of the largest credit reporting agencies to study credit and debt outcomes for millions of consumers in the United States.

Michael Craig

By |

Michael is an Assistant Professor of Energy Systems at the University of Michigan’s School for Environment and Sustainability and PI of the ASSET Lab. He researches how to equitably reduce global and local environmental impacts of energy systems while making those systems robust to future climate change. His research advances energy system models to address new challenges driven by decarbonization, climate adaptation, and equity objectives. He then applies these models to real-world systems to generate decision-relevant insights that account for engineering, economic, climatic, and policy features. His energy system models leverage optimization and simulation methods, depending on the problem at hand. Applying these models to climate mitigation or adaptation in real-world systems often runs into computational limits, which he overcomes through clustering, sampling, and other data reduction algorithms. His current interdisciplinary collaborations include climate scientists, hydrologists, economists, urban planners, epidemiologists, and diverse engineers.

Edgar Franco-Vivanco

By |

Edgar Franco-Vivanco is an Assistant Professor of Political Science and a faculty associate at the Center for Political Studies. His research interests include Latin American politics, historical political economy, criminal violence, and indigenous politics.

Prof. Franco-Vivanco is interested in implementing machine learning tools to improve the analysis of historical data, in particular handwritten documents. He is also working in the application of text analysis to study indigenous languages. In a parallel research agenda, he explores how marginalized communities interact with criminal organizations and abusive policing in Latin America. As part of this research, he is using NLP tools to identify different types of criminal behavior.

Examples of the digitization process of handwritten documents from colonial Mexico.

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Jodyn Platt

By |

Our team leads research on the Ethical, Legal, and Social Implications (ELSI) of learning health systems and related enterprises. Our research uses mixed methods to understand policies and practices that make data science methods (data collection and curation, AI, computable algorithms) trustworthy for patients, providers, and the public. Our work engages multiple stakeholders including providers and health systems, as well as the general public and minoritized communities on issues such as AI-enabled clinical decision support, data sharing and privacy, and consent for data use in precision oncology.

Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.

Allyson Flaster

By |

I manage research activities for the College and Beyond II study at ICPSR, including survey development and data infrastructure planning. My research broadly focuses on issues of postsecondary access and success for undergraduate and graduate students and uses quantitative methodologies.

Kevin Stange

By |

Prof. Stange’s research uses population administrative education and labor market data to understand, evaluate and improve education, employment, and economic policy. Much of the work involves analyzing millions of course-taking and transcript records for college students, whether they be at a single institution, a handful of institutions, or all institutions in several states. This data is used to richly characterize the experiences of college students and relate these experiences to outcomes such as educational attainment, employment, earnings, and career trajectories. Several projects also involve working with the text contained in the universe of all job ads posted online in the US for the past decade. This data is used to characterize the demand for different skills and education credentials in the US labor market. Classification is a task that is arising frequently in this work: How to classify courses into groups based on their title and content? How to identify students with similar educational experiences based on their course-taking patterns? How to classify job ads as being more appropriate for one type of college major or another? This data science work is often paired with traditional causal inference tools of economics, including quasi-experimental methods.

Mithun Chakraborty

By |

My broad research interests are in multi-agent systems, computational economics and finance, and artificial intelligence. I apply techniques from algorithmic game theory, statistical machine learning, decision theory, etc. to a variety of problems at the intersection of the computational and social sciences. A major focus of my research has been the design and analysis of market-making algorithms for financial markets and, in particular, prediction markets — incentive-based mechanisms for aggregating data in the form of private beliefs about uncertain events (e.g. the outcome of an election) distributed among strategic agents. I use both analytical and simulation-based methods to investigate the impact of factors such as wealth, risk attitude, manipulative behavior, etc. on information aggregation in market ecosystems. Another line of work I am pursuing involves algorithms for allocating resources based on preference data collected from potential recipients, satisfying efficiency, fairness, and diversity criteria; my joint work on ethnicity quotas in Singapore public housing allocation deserves special mention in this vein. More recently, I have got involved in research on empirical game-theoretic analysis, a family of methods for building tractable models of complex, procedurally defined games from empirical/simulated payoff data and using them to reason about game outcomes.