Anthony Bloch

Anthony Bloch

By |

My research interests include : Hamiltonian and Lagrangian mechanics, gradient flows on manifolds, integrable systems stability, the motion of mechanical systems with constraints, the relationship between continuous and discrete flows, nonlinear and optimal control and the control of quantum systems. I also interested in data-guided control and in particular the dynamics and control
of networks and systems arising from large sets, particularly in biological applications.

Sally Oey

Sally Oey

By |

Sally Oey’s group is studying massive star populations and the escape of ionizing radiation from starburst galaxies and super star clusters. The group is at the forefront of establishing a new paradigm for massive-star feedback, where superwinds from compact young star clusters fail to launch. Members have used numerical simulations and image processing techniques to investigate such conditions for allowing ionizing radiation to penetrate the dense gas in star-forming clouds and the interstellar medium in “green pea” galaxies and resolved nearby starbursts. The ionizing radiation may originate from massive binaries and their products, thus group members are carrying out data mining of observational surveys and binary population synthesis models to study how binarity manifests in stellar populations.

Leopoldo Pando Zayas

Leopoldo Pando Zayas

By |

My main research interest is in quantum gravity. Various aspects of quantum information and quantum chaotic systems have proven to be essential in recent developments.

Photograph of Nicholas Kotov

Nicholas Kotov

By |

Nicholas A. Kotov is Irving Langmuir Distinguished University Professor in Chemical Sciences at the University of Michigan. He is a pioneer of theoretical foundations and practical implementations of complex systems from ‘imperfect’ nanoparticles that offer a vast field for the application of data science and machine learning. Chiral nanostructures, biomimetic nanocomposites, and graph theoretical representations are the focal points in his current work.  Nicholas is a recipient of more than 60 awards and recognitions. Together with his students, Nicholas founded several startups that commercialized self-assembled nanostructures for the energy, healthcare, and automotive industry. Nicholas is a Fellow of the America Academy of Arts and Sciences and the National Academy of Inventors.  He is an advocate for scientists with disabilities.

Thomas A. Schwarz

Thomas A. Schwarz

By |

Professor Schwarz is an experimental particle physicist who has performed research in astro-particle physics, collider physics, as well as in accelerator physics and RF engineering. His current research focuses on discovering new physics in high-energy collisions with the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. His particular focus is in precision measurements of properties of the Higgs Boson and searching for new associated physics using advanced AI and machine learning techniques.

Krishna Garikipati

Krishna Garikipati

By |

My research is in computational science and scientific artificial intelligence, including machine learning and data-driven modelling. I have applied these approaches to physics discovery by model inference, scale bridging, partial differential equation solvers, representation of complexity and constructing reduced-order models of high-dimensional systems. My research is motivated by and applied to phenomena in bioengineering, biophysics, mathematical biology and materials physics. Of specific interest to me are patterning and morphogenesis in developmental biology, cellular biophysics, soft matter and mechano-chemical phase transformations in materials. More fundamentally, the foundations of my research lie in applied mathematics, numerical methods and scientific computing.

A schematic illustrating the range of ML methods comprising the mechanoChemML code framework for data-driven computational material physics.

Michael Craig

By |

Michael is an Assistant Professor of Energy Systems at the University of Michigan’s School for Environment and Sustainability and PI of the ASSET Lab. He researches how to equitably reduce global and local environmental impacts of energy systems while making those systems robust to future climate change. His research advances energy system models to address new challenges driven by decarbonization, climate adaptation, and equity objectives. He then applies these models to real-world systems to generate decision-relevant insights that account for engineering, economic, climatic, and policy features. His energy system models leverage optimization and simulation methods, depending on the problem at hand. Applying these models to climate mitigation or adaptation in real-world systems often runs into computational limits, which he overcomes through clustering, sampling, and other data reduction algorithms. His current interdisciplinary collaborations include climate scientists, hydrologists, economists, urban planners, epidemiologists, and diverse engineers.

Brendan Kochunas

By |

Dr. Kochunas’s research focus is on the next generation of numerical methods and parallel algorithms for high fidelity computational reactor physics and how to leverage these capabilities to develop digital twins. His group’s areas of expertise include neutron transport, nuclide transmutation, multi-physics, parallel programming, and HPC architectures. The Nuclear Reactor Analysis and Methods (NURAM) group is also developing techniques that integrate data-driven methods with conventional approaches in numerical analysis to produce “hybrid models” for accurate, real-time modeling applications. This is embodied by his recent efforts to combine high-fidelity simulation results simulation models in virtual reality through the Virtual Ford Nuclear Reactor.

Relationship of concepts for the Digital Model, Digital Shadow, Digital Twin, and the Physical Asset using images and models of the Ford Nuclear Reactor as an example. Large arrows represent automated information exchange and small arrows represent manual data exchange.

Lia Corrales

By |

My PhD research focused on identifying the size and mineralogical composition of interstellar dust through X-ray imaging of dust scattering halos to X-ray spectroscopy of bright objects to study absorption from intervening material. Over the course of my PhD I also developed an open source, object oriented approach to computing extinction properties of particles in Python that allows the user to change the scattering physics models and composition properties of dust grains very easily. In many cases, the signal I look for from interstellar dust requires evaluating the observational data on the 1-5% level. This has required me to develop a deep understanding of both the instrument and the counting statistics (because modern-day X-ray instruments are photon counting tools). My expertise led me to a postdoc at MIT, where I developed techniques to obtain high resolution X-ray spectra from low surface brightness (high background) sources imaged with the Chandra X-ray Observatory High Energy Transmission Grating Spectrometer. I pioneered these techniques in order to extract and analyze the high resolution spectrum of Sgr A*, our Galaxy’s central supermassive black hole (SMBH), producing a legacy dataset with a precision that will not be replaceable for decades. This dataset will be used to understand why Sgr A* is anomalously inactive, giving us clues to the connection between SMBH activity and galactic evolution. In order to publish the work, I developed an open source software package, pyXsis (github.com/eblur/pyxsis) in order to model the low signal-to-noise spectrum of Sgr A* simultaneously with a non-physical parameteric model of the background spectrum (Corrales et al., 2020). As a result of my vocal advocacy for Python compatible software tools and a modular approach to X-ray data analysis, I became Chair for HEACIT (which stands for “High Energy Astrophysics Codes, Interfaces, and Tools”), a new self-appointed working group of X-ray software engineers and early career scientists interested in developing tools for future X-ray observatories. We are working to identify science cases that high energy astronomers find difficult to support with the current software libraries, provide a central and publicly available online forum for tutorials and discussion of current software libraries, and develop a set of best practices for X-ray data analysis. My research focus is now turning to exoplanet atmospheres, where I hope to measure absorption from molecules and aerosols in the UV. Utilizing UM access to the Neil Gehrels Swift Observatory, I work to observe the dip in a star’s brightness caused by occultation (transit) from a foreground planet. Transit depths are typically <1%, and telescopes like Swift were not originally designed with transit measurements (i.e., this level of precision) in mind. As a result, this research strongly depends on robust methods of scientific inference from noisy datasets.

cirx1_heinz_pretty_image

As a graduate student, I attended some of the early “Python in Astronomy” workshops. While there, I wrote Jupyter Notebook tutorials that helped launch the Astropy Tutorials project (github.com/astropy/astropy-tutorials), which expanded to Learn Astropy (learn.astropy.org), for which I am a lead developer. Since then, I have also become a leader within the larger Astropy collaboration. I have helped develop the Astropy Project governance structure, hired maintainers, organized workshops, and maintained an AAS presence for the Astropy Project and NumFocus (the non-profit umbrella organization that works to sustain open source software communities in scientific computing) for the last several years. As a woman of color in a STEM field, I work to clear a path by teaching the skills I have learned along the way to other underrepresented groups in STEM. This year I piloted WoCCode (Women of Color Code), an online network and webinar series for women from minoritized backgrounds to share expertise and support each other in contributing to open source software communities.

Ayumi Fujisaki-Manome

By |

Fujisaki-Manome’s research program aims to improve predictability of hazardous weather, ice, and lake/ocean events in cold regions in order to support preparedness and resilience in coastal communities, as well as improve the usability of their forecast products by working with stakeholders. The main question Fujisaki-Manome’s research aims to address is: what are the impacts of interactions between ice and oceans / ice and lakes on larger scale phenomena, such as climate, weather, storm surges, and sea/lake ice melting? Fujisaki-Manome primarily uses numerical geophysical modeling and machine learning to address the research question; and scientific findings from the research feed back into the models and improve their predictability. Her work has focused on applications to the Great Lakes, the Alaska’s coasts, Arctic Ocean, and the Sea of Okhotsk.

View MIDAS Faculty Research Pitch, Fall 2021

Areal fraction of ice cover in the Great Lakes in January 2018 modeled by the unstructured grid ice-hydrodynamic numerical model.