Explore ARCExplore ARC

Ho-Joon Lee

By |

Dr. Lee’s research in data science concerns biological questions in systems biology and network medicine by developing algorithms and models through a combination of statistical/machine learning, information theory, and network theory applied to multi-dimensional large-scale data. His projects have covered genomics, transcriptomics, proteomics, and metabolomics from yeast to mouse to human for integrative analysis of regulatory networks on multiple molecular levels, which also incorporates large-scale public databases such as GO for functional annotation, PDB for molecular structures, and PubChem and LINCS for drugs or small compounds. He previously carried out proteomics and metabolomics along with a computational derivation of dynamic protein complexes for IL-3 activation and cell cycle in murine pro-B cells (Lee et al., Cell Reports 2017), for which he developed integrative analytical tools using diverse approaches from machine learning and network theory. His ongoing interests in methodology include machine/deep learning and topological Kolmogorov-Sinai entropy-based network theory, which are applied to (1) multi-level dynamic regulatory networks in immune response, cell cycle, and cancer metabolism and (2) mass spectrometry-based omics data analysis.

Figure 1. Proteomics and metabolomics analysis of IL-3 activation and cell cycle (Lee et al., Cell Reports 2017). (A) Multi-omics abundance profiles of proteins, modules/complexes, intracellular metabolites, and extracellular metabolites over one cell cycle (from left to right columns) in response to IL-3 activation. Red for proteins/modules/intracellular metabolites up-regulation or extracellular metabolites release; Green for proteins/modules/intracellular metabolites down-regulation or extracellular metabolites uptake. (B) Functional module network identified from integrative analysis. Red nodes are proteins and white nodes are functional modules. Expression profile plots are shown for literature-validated functional modules. (C) Overall pathway map of IL-3 activation and cell cycle phenotypes. (D) IL-3 activation and cell cycle as a cancer model along with candidate protein and metabolite biomarkers. (E) Protein co-expression scale-free network. (F) Power-low degree distribution of the network E. (G) Protein entropy distribution by topological Kolmogorov-Sinai entropy calculated for the network E.

 

Nils G. Walter

By |

Nils G. Walter, PhD, is the Francis S. Collins Collegiate Professor of Chemistry, Biophysics and Biological Chemistry, College of Literature, Science, and the Arts and Professor of Biological Chemistry, Medical School, at the University of Michigan, Ann Arbor.

Nature and Nanotechnology likewise employ nanoscale machines that self-assemble into structures of complex architecture and functionality.  Fluorescence microscopy offers a non-invasive tool to probe and ultimately dissect and control these nanoassemblies in real-time.  In particular, single molecule fluorescence resonance energy transfer (smFRET) allows us to measure distances at the 2-8 nm scale, whereas complementary super-resolution localization techniques based on Gaussian fitting of imaged point spread functions (PSFs) measure distances in the 10 nm and longer range.  In terms of Big Data Analysis, we have developed a method for the intracellular single molecule, high-resolution localization and counting (iSHiRLoC) of microRNAs (miRNAs), a large group of gene silencers with profound roles in our body, from stem cell development to cancer.  Microinjected, singly-fluorophore labeled, functional miRNAs are tracked at super-resolution within individual diffusing particles.  Observed mobility and mRNA dependent assembly changes suggest the existence of two kinetically distinct assembly processes.  We are currently feeding these data into a single molecule systems biology pipeline to bring into focus the unifying molecular mechanism of such a ubiquitous gene regulatory pathway.  In addition, we are using cluster analysis of smFRET time traces to show that large RNA processing machines such as single spliceosomes – responsible for the accurate removal of all intervening sequences (introns) in pre-messenger RNAs – are working as biased Brownian ratchet machines.  On the opposite end of the application spectrum, we utilize smFRET and super-resolution fluorescence microscopy to monitor enhanced enzyme cascades and nanorobots engineered to self-assemble and function on DNA origami.

Artistic depiction of the SiMREPS platform we are building for the direct single molecule counting of miRNA biomarkers in crude biofluids (Johnson-Buck, A. et al. Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol 33, 730-732 (2015)).

Artistic depiction of the SiMREPS platform we are building for the direct single molecule counting of miRNA biomarkers in crude biofluids (Johnson-Buck, A. et al. Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol 33, 730-732 (2015)).

Jerome P. Lynch

By |

Jerome P. Lynch, PhD, is Professor and Donald Malloure Department Chair of the Civil and Environmental Engineering Department in the College of Engineering in the University of Michigan, Ann Arbor.

Prof. Lynch’s group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets, they collect from operational infrastructure systems, and undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, their algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of Prof. Lynch’s work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.