Sardar Ansari

By |

I build data science tools to address challenges in medicine and clinical care. Specifically, I apply signal processing, image processing and machine learning techniques, including deep convolutional and recurrent neural networks and natural language processing, to aid diagnosis, prognosis and treatment of patients with acute and chronic conditions. In addition, I conduct research on novel approaches to represent clinical data and combine supervised and unsupervised methods to improve model performance and reduce the labeling burden. Another active area of my research is design, implementation and utilization of novel wearable devices for non-invasive patient monitoring in hospital and at home. This includes integration of the information that is measured by wearables with the data available in the electronic health records, including medical codes, waveforms and images, among others. Another area of my research involves linear, non-linear and discrete optimization and queuing theory to build new solutions for healthcare logistic planning, including stochastic approximation methods to model complex systems such as dispatch policies for emergency systems with multi-server dispatches, variable server load, multiple priority levels, etc.

Michael Rubyan

By |

My research focuses on the development and evaluation of novel interventions that leverage emerging technologies to train members of the healthcare workforce around adhering to guidelines. I study how to scale custom designed teaching and learning platforms and evaluate their use to motivate effective communication and dissemination of evidence based practice. Other emphases of my work include health policy literacy, translation and communication of health services research, and improving health system literacy in urban communities. I have developed and evaluated numerous web based educational interventions that employ the “flipped classroom” design with an emphasis on understanding the data and analytics that guide successful implementation and promote high fidelity for members of the healthcare workforce. As an implementation scientist, I rely on the integration of data and analytics to understand what motivates successful program implementation.

In addition to the development of these platforms, I have extensive experience developing and evaluating online, hybrid residential, residential courses, and MOOCs related to healthcare management, non-profit management, healthcare finance, and health economics that employ engaging lessons and modules, interactive graphics, and a blended learning format to aid health professions students, and both undergraduate and graduate public health students in understanding the healthcare system. My MOOC entitled “Understanding and Improving the U.S. Health Care System” has been taken by over 5,000 learners and is characterized by the use of “big data” to understand how future healthcare providers learn health policy.

Rahul Ladhania

By |

Rahul Ladhania is an Assistant Professor of Health Informatics in the Department of Health Management & Policy at the University of Michigan School of Public Health. He also has a secondary (courtesy) appointment with the Department of Biostatistics at SPH. Rahul’s research is in the area of causal inference and machine learning in public and behavioral health. A large body of his work focuses on estimating personalized treatment rules and heterogeneous effects of policy, digital and behavioral interventions on human behavior and health outcomes in complex experimental and observational settings using statistical machine learning methods.

Rahul co-leads the Machine Learning team at the Behavior Change For Good Initiative (Penn), where he is working on two `mega-studies’ (very large multi-arm randomized trials): one in partnership with a national fitness chain, to estimate the effects of behavioral interventions on promoting gym visit habit formation; and the other in partnership with two large Mid-Atlantic health systems and a national pharmacy chain, to estimate the effects of text-based interventions on increasing flu shot vaccination rates. His other projects involve partnerships with step-counting apps and mobile-based games to learn user behavior patterns, and design and evaluate interventions and their heterogeneous effects on user behavior.

Ranjan Pal

By |

Cyber-security is a complex and multi-dimensional research field. My research style comprises an inter-disciplinary (primarily rooted in economics, econometrics, data science (AI/ML/Bayesian and Frequentist Statistics), game theory, and network science) investigation of major socially pressing issues impacting the quality of cyber-risk management in modern networked and distributed engineering systems such as IoT-driven critical infrastructures, cloud-based service networks, and app-based systems (e.g., mobile commerce, smart homes) to name a few. I take delight in proposing data-driven, rigorous, and interdisciplinary solutions to both, existing fundamental challenges that pose a practical bottleneck to (cost) effective cyber-risk management, and futuristic cyber-security and privacy issues that might plague modern (networked) engineering systems. I strongly strive for originality, practical significance, and mathematical rigor in my solutions. One of my primary end goals is to conceptually get arms around complex, multi-dimensional information security and privacy problems in a way that helps, informs, and empowers practitioners and policy makers to take the right steps in making the cyber-space more secure.

Stephan F. Taylor

By |

STEPHAN F. TAYLOR is a professor of psychiatry and Associate Chair for Research and Research Regulatory Affairs in the Department of Psychiatry; and an adjunct professor of psychology.

His work uses brain mapping and brain stimulation to study and treat serious mental disorders such as psychosis, refractory depression and obsessive-compulsive disorder. Data science techniques area applied in the analysis of high dimensional functional magnetic resonance imaging datasets and meso-scale brain networks, using supervised and unsupervised techniques to interrogate brain-behavior correlations relevant for psychopathological conditions. Clinical-translation work with brain stimulation, primarily with transcranial magnetic stimulation, is informed by mapping meso-scale networks to guide treatment of conditions such as depression. Future work seeks to use machine learning to identify treatment predictors and match individual patients to specific treatments.

Donald S. Likosky

By |

Dr. Likosky is a Professor, Head of the Section of Health Services Research and Quality in the Department of Cardiac Surgery at Michigan Medicine and faculty member at the Center for Healthcare Outcomes and Policy. Dr. Likosky’s work currently focuses on leveraging: (i) mobile health technology to identify objective and scalable measures for mitigating post-surgical morbidities, and (ii) computer vision to identify objective and scalable measures of important intraoperative technical skills and non-technical practices.

Nikola Banovic

By |

My research focuses on methods, applications, and ethics of Computational Modeling in Human-Computer Interaction (HCI). Understanding and modeling human behavior supports innovative information technology that will change how we study and design interactive user experiences. I envision modeling the human accurately across domains as a theoretical foundation for work in HCI in which computational models provide a foundation to study, describe, and understand complex human behaviors and support optimization and evaluation of user interfaces. I create technology that automatically reasons about and acts in response to people’s behavior to help them be productive, healthy, and safe.

Akbar Waljee

By |

I use machine-learning techniques to implement decision support systems and tools that facilitate more personalized care for disease management and healthcare utilization to ultimately deliver efficient, effective, and equitable therapy for chronic diseases. To test and advance these general principles, I have built operational programs that are guiding—and improving—patient care in costly in low resource settings, including emerging countries.

Jim Omartian

By |

My research explores the interplay between corporate decisions and employee actions. I currently use anonymized mobile device data to observe individual behaviors, and employ both unsupervised and supervised machine learning techniques.