Ranjan Pal

By |

Cyber-security is a complex and multi-dimensional research field. My research style comprises an inter-disciplinary (primarily rooted in economics, econometrics, data science (AI/ML/Bayesian and Frequentist Statistics), game theory, and network science) investigation of major socially pressing issues impacting the quality of cyber-risk management in modern networked and distributed engineering systems such as IoT-driven critical infrastructures, cloud-based service networks, and app-based systems (e.g., mobile commerce, smart homes) to name a few. I take delight in proposing data-driven, rigorous, and interdisciplinary solutions to both, existing fundamental challenges that pose a practical bottleneck to (cost) effective cyber-risk management, and futuristic cyber-security and privacy issues that might plague modern (networked) engineering systems. I strongly strive for originality, practical significance, and mathematical rigor in my solutions. One of my primary end goals is to conceptually get arms around complex, multi-dimensional information security and privacy problems in a way that helps, informs, and empowers practitioners and policy makers to take the right steps in making the cyber-space more secure.

Stephan F. Taylor

By |

STEPHAN F. TAYLOR is a professor of psychiatry and Associate Chair for Research and Research Regulatory Affairs in the Department of Psychiatry; and an adjunct professor of psychology.

His work uses brain mapping and brain stimulation to study and treat serious mental disorders such as psychosis, refractory depression and obsessive-compulsive disorder. Data science techniques area applied in the analysis of high dimensional functional magnetic resonance imaging datasets and meso-scale brain networks, using supervised and unsupervised techniques to interrogate brain-behavior correlations relevant for psychopathological conditions. Clinical-translation work with brain stimulation, primarily with transcranial magnetic stimulation, is informed by mapping meso-scale networks to guide treatment of conditions such as depression. Future work seeks to use machine learning to identify treatment predictors and match individual patients to specific treatments.

Dr. Donald S. Likosky

By |

Dr. Likosky is a Professor, Head of the Section of Health Services Research and Quality in the Department of Cardiac Surgery at Michigan Medicine and faculty member at the Center for Healthcare Outcomes and Policy. Dr. Likosky’s work currently focuses on leveraging: (i) mobile health technology to identify objective and scalable measures for mitigating post-surgical morbidities, and (ii) computer vision to identify objective and scalable measures of important intraoperative technical skills and non-technical practices.

Nikola Banovic

By |

My research focuses on methods, applications, and ethics of Computational Modeling in Human-Computer Interaction (HCI). Understanding and modeling human behavior supports innovative information technology that will change how we study and design interactive user experiences. I envision modeling the human accurately across domains as a theoretical foundation for work in HCI in which computational models provide a foundation to study, describe, and understand complex human behaviors and support optimization and evaluation of user interfaces. I create technology that automatically reasons about and acts in response to people’s behavior to help them be productive, healthy, and safe.

Akbar Waljee

By |

I use machine-learning techniques to implement decision support systems and tools that facilitate more personalized care for disease management and healthcare utilization to ultimately deliver efficient, effective, and equitable therapy for chronic diseases. To test and advance these general principles, I have built operational programs that are guiding—and improving—patient care in costly in low resource settings, including emerging countries.

Jim Omartian

By |

My research explores the interplay between corporate decisions and employee actions. I currently use anonymized mobile device data to observe individual behaviors, and employ both unsupervised and supervised machine learning techniques.

Jenny Radesky

By |

My research focuses on the intersection between mobile technology, parenting, parent-child interaction, and child development of processes such as executive functioning, self-regulation, and social-emotional well-being. Our projects use a combination of methods including surveys, videotaped parent-child interaction tasks, time diaries, and mobile device app logging to examine how parents and young children use mobile technologies throughout their day. We have developed novel content analysis approaches to understand the experience of young children while using commercially available mobile apps – including advertising content, educational quality, and data collection. We emphasize questions that are relevant to everyday parenting experiences, and also consider what design changes would help create an optimal default environment for children and families.

Lorraine Buis

By |

I conduct research on the use of consumer-facing technologies for chronic disease self management. My work predominantly centers on the use of mobile applications that collect and manage patient generated health data overt time.

Halil Bisgin

By |

My research is focused on a wide range of topics from computational social sciences to bioinformatics where I do pattern recognition, perform data analysis, and build prediction models. At the core of my effort, there lie machine learning methods by which I have been trying to address problems related to social networks, opinion mining, biomarker discovery, pharmacovigilance, drug repositioning, security analytics, genomics, food contamination, and concussion recovery. I’m particularly interested in and eager to collaborate on cyber security aspect of social media analytics that includes but not limited to misinformation, bots, and fake news. In addition, I’m still pursuing opportunities in bioinformatics, especially about next generation sequencing analysis that can be also leveraged for phenotype predictions by using machine learning methods.

A typical pipeline for developing and evaluating a prediction models to identify malicious Android mobile apps in the market