Nancy Fleischer

By |

Dr. Fleischer’s research focuses on how the broader socioeconomic and policy environments impact health disparities and the health of vulnerable populations, in the U.S. and around the world. Through this research, her group employs various analytic techniques to examine data at multiple levels (country-level, state-level, and neighborhood-level), emphasizing the role of structural influences on individual health. Her group applies advanced epidemiologic, statistical, and econometric methods to this research, including survey methodology, longitudinal data analysis, hierarchical modeling, causal inference, systems science, and difference-in-difference analysis. Dr. Fleischer leads two NCI-funded projects focused on the impact of tobacco control policies on health equity in the U.S.

Jenny Radesky

By |

My research focuses on the intersection between mobile technology, parenting, parent-child interaction, and child development of processes such as executive functioning, self-regulation, and social-emotional well-being. Our projects use a combination of methods including surveys, videotaped parent-child interaction tasks, time diaries, and mobile device app logging to examine how parents and young children use mobile technologies throughout their day. We have developed novel content analysis approaches to understand the experience of young children while using commercially available mobile apps – including advertising content, educational quality, and data collection. We emphasize questions that are relevant to everyday parenting experiences, and also consider what design changes would help create an optimal default environment for children and families.

Xiaoling Xiang

By |

Xiaoling Xiang conducts community-based services research concerning the physical and mental health and service use of diverse older populations. She is particularly interested in psychosocial approaches to promoting mental health and enhancing the quality of life in older adults. Her other areas of research include the epidemiology of mental disorders in late life, comorbidity, quality of home and community-based services, and implementation of evidence-based interventions. She uses a variety of applied statistical methods in the analysis of data from national surveys, electronic medical records, insurance claims.

William J. Gehring

By |

Williams is a Professor of Psychology, University of Michigan, Ann Arbor. His academic interests span two lines of teaching and research: his longest-running line of research concerns the brain processes involved in detecting errors, including how those processes affect anxiety disorders and children’s executive function. More recently, he has focused on higher education, teaching first-year undergraduate students evidence-based principles for learning and finding purpose in college. His research in this area uses institutional data to understand the factors within the college and the curriculum that promote or hinder academic success.

Kean Ming Tan

By |

I am an applied statistician working on statistical machine learning methods for analyzing complex biomedical data sets. I develop multivariate statistical methods such as probabilistic graphical models, cluster analysis, discriminant analysis, and dimension reduction to uncover patterns from massive data set. Recently, I also work on topics related to robust statistics, non-convex optimization, and data integration from multiple sources.

Sunghee Lee

By |

My research focuses on issues in data collection with hard-to-reach populations. In particular, she examines 1) nontraditional sampling approaches for minority or stigmatized populations and their statistical properties and 2) measurement error and comparability issues for racial, ethnic and linguistic minorities, which also have implications for cross-cultural research/survey methodology. Most recently, my research has been dedicated to respondent driven sampling that uses existing social networks to recruit participants in both face-to-face and Web data collection settings. I plan to expand my research scope in examining representation issues focusing on the racial/ethnic minority groups in the U.S. in the era of big data.

Todd I Herrenkohl

By |

Before joining the faculty at the University of Michigan in 2018 as Professor and Marion Elizabeth Blue Chair of Children and Families, I was Co-Director of the 3DL Partnership at the University of Washington, where I collaborated with academic colleagues, students, and service providers throughout the state to conduct and translate research on social emotional learning (SEL) and trauma-informed practices. I am now pursuing a similar line of research in Michigan, where I am collaborating with state partners and to identify, develop, and refine new approaches to disseminate research for schools and early childhood settings engaged in SEL and trauma work. As a scholar, I am committed to increasing the visibility, application, and sustainability of evidence-based programs and practices relevant to these topics and have worked extensively in the U.S. and internationally to advance goals for prevention and the promotion of child well-being.

Jin Lu

By |

Dr. Jin Lu is an Assistant Professor of Computer and Information Science at the University of Michigan, Dearborn.
His major research interests include machine learning, data mining, optimization, matrix analysis, biomedical informatics, and health informatics. Two main directions are being pursued:
(1) Large-scale machine learning problems with data heterogeneity. Data heterogeneity is common across many high-impact application domains, ranging from recommendation system to Computer Vision, Bioinformatics and Health-informatics. Such heterogeneity can be present in a variety of forms, including (a) sample heterogeneity, where multiple resources of data samples are available as side information; (b) task heterogeneity, where multiple related learning tasks can be jointly learned to improve the overall performance; (c) view heterogeneity, where complementary information is available from various sources. My research interests focus on building efficient machine learning methods from such data heterogeneity, aiming to improve the learning model by making the best use of all data resources.
(2) Machine learning methods with provable guarantees. Machine learning has been substantially developed and has demonstrated great success in various domains. Despite its practical success, many of the applications involve solving NP-hard problems based on heuristics. It is challenging to analyze whether a heuristic scheme has any theoretical guarantee. My research interest is to employ granular data structure, e.g. sample clusters or features describing an aspect of the sample, to design new theoretically-sound models and algorithms for machine learning problems.

Jeffrey Regier

By |

Jeffrey Regier received a PhD in statistics from UC Berkeley (2016) and joined the University of Michigan as an assistant professor. His research interests include graphical models, Bayesian inference, high-performance computing, deep learning, astronomy, and genomics.