Mark Steven Cohen

By |

In his various roles, he has helped develop several educational programs in Innovation and Entrepreneurial Development (the only one of their kind in the world) for medical students, residents, and faculty as well as co-founding 4 start-up companies (including a consulting group, a pharmaceutical company, a device company, and a digital health startup) to improve the care of surgical patients and patients with cancer. He has given over 80 invited talks both nationally and internationally, written and published over 110 original scientific articles, 12 book chapters, as well as a textbook on “Success in Academic Surgery: Innovation and Entrepreneurship” published in 2019 by Springer-NATURE. His research is focused on drug development and nanoparticle drug delivery for cancer therapeutic development as well as evaluation of circulating tumor cells, tissue engineering for development of thyroid organoids, and evaluating the role of mixed reality technologies, AI and ML in surgical simulation, education and clinical care delivery as well as directing the Center for Surgical Innovation at Michigan. He has been externally funded for 13 consecutive years by donors and grants from Susan G. Komen Foundation, the American Cancer Society, and he currently has funding from three National Institute of Health R-01 grants through the National Cancer Institute. He has served on several grant study sections for the National Science Foundation, the National Institute of Health, the Department of Defense, and the Susan G. Komen Foundation. He also serves of several scientific journal editorial boards and has serves on committees and leadership roles in the Association for Academic Surgery, the Society of University Surgeons and the American Association of Endocrine Surgeons where he was the National Program Chair in 2013. For his innovation efforts, he was awarded a Distinguished Faculty Recognition Award by the University of Michigan in 2019. His clinical interests and national expertise are in the areas of Endocrine Surgery: specifically thyroid surgery for benign and malignant disease, minimally invasive thyroid and parathyroid surgery, and adrenal surgery, as well as advanced Melanoma Surgery including developing and running the hyperthermic isolated limb perfusion program for in transit metastatic melanoma (the only one in the state of Michigan) which is now one of the largest in the nation.

Jesse Hamilton

By |

My research focuses on the development of novel Magnetic Resonance Imaging (MRI) technology for imaging the heart. We focus in particular on quantitative imaging techniques, in which the signal intensity at each pixel in an image represents a measurement of an inherent property of a tissue. Much of our research is based on cardiac Magnetic Resonance Fingerprinting (MRF), which is a class of methods for simultaneously measuring multiple tissue properties from one rapid acquisition.

Our group is exploring novel ways to combine physics-based modeling of MRI scans with deep learning algorithms for several purposes. First, we are exploring the use of deep learning to design quantitative MRI scans with improved accuracy and precision. Second, we are developing deep learning approaches for image reconstruction that will allow us to reduce image noise, improve spatial resolution and volumetric coverage, and enable highly accelerated acquisitions to shorten scan times. Third, we are exploring ways of using artificial intelligence to derive physiological motion signals directly from MRI data to enable continuous scanning that is robust to cardiac and breathing motion. In general, we focus on algorithms that are either self-supervised or use training data generated in computer simulations, since the collection of large amounts of training data from human subjects is often impractical when designing novel imaging methods.

Kathryn Luker

By |

As an expert in molecular imaging of single cell signaling in cancer, I develop integrated systems of molecular, cellular, optical, and custom image processing tools to extract rich data sets for biochemical and behavioral functions in living cells over minutes to days. Data sets composed of thousands to millions of cells enable us to develop predictive models of cellular function through a variety of computational approaches, including ODE, ABM, and IRL modeling.

Gary Luker

By |

We use a variety of quantitative imaging methods, ranging from single cells to clinical studies, to investigate cancer signaling and response to therapy over space and time. We develop image analysis methods to extract data from thousands of single cells over time and voxel-wise measurements of imaging parameters. We also use bulk and single-cell RNA sequencing to investigate heterogeneity among cancer cells and changes induced by intercellular interactions. A current goal of our ongoing work is to merge RNA sequencing and imaging data to understand cell decision making in cancer. We collaborate with investigators using machine learning and computational modeling approaches to inform cell signaling and resultant behaviors in tumor growth and metastasis.

Lana Garmire

By |

My research interest lies in applying data science for actionable transformation of human health from the bench to bedside. Current research focus areas include cutting edge single-cell sequencing informatics and genomics; precision medicine through integration of multi-omics data types; novel modeling and computational methods for biomarker research; public health genomics. I apply my biomedical informatics and analytical expertise to study diseases such as cancers, as well the impact of pregnancy/early life complications on later life diseases.

Mihaela (Miki) Banu

By |

In the area of multi-scale modeling of manufacturing processes: (a) Models for understanding the mechanisms of forming and joining of lightweight materials. This new understanding enables the development of advanced processes which remove limitations of current state-of-the-art capabilities that exhibit limited formability of high strength lightweight alloys, and limited reproducibility of joining quality; (b) Innovative multi-scale finite element models for ultrasonic welding of battery tabs (resulting in models adopted by GM for designing and manufacturing batteries for the Chevy Volt), and multi-scale models for ultrasonic welding of short carbon fiber composites (resulting in models adopted by GM for designing and manufacturing assemblies made of carbon fiber composites with metallic parts); (c) Data-driven algorithms of prediction geometrical and microstructural integrity of the incremental formed parts. Machine learning is used for developing fast and robust methods to be integrated into the designing process and replace finite element simulations.

Stephan F. Taylor

By |

STEPHAN F. TAYLOR is a professor of psychiatry and Associate Chair for Research and Research Regulatory Affairs in the Department of Psychiatry; and an adjunct professor of psychology.

His work uses brain mapping and brain stimulation to study and treat serious mental disorders such as psychosis, refractory depression and obsessive-compulsive disorder. Data science techniques area applied in the analysis of high dimensional functional magnetic resonance imaging datasets and meso-scale brain networks, using supervised and unsupervised techniques to interrogate brain-behavior correlations relevant for psychopathological conditions. Clinical-translation work with brain stimulation, primarily with transcranial magnetic stimulation, is informed by mapping meso-scale networks to guide treatment of conditions such as depression. Future work seeks to use machine learning to identify treatment predictors and match individual patients to specific treatments.

Nambi Nallasamy

By |

Our team develops machine learning algorithms for the enhancement of outcomes in cataract surgery, the most commonly performed surgery in the world. Our works focuses on developing models for postoperative refraction after cataract surgery and analysis of surgical quality.

Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Lucia Cevidanes

By |

We have developed and tested machine learning approaches to integrate quantitative markers for diagnosis and assessment of progression of TMJ OA, as well as extended the capabilities of 3D Slicer4 into web-based tools and disseminated open source image analysis tools. Our aims use data processing and in-depth analytics combined with learning using privileged information, integrated feature selection, and testing the performance of longitudinal risk predictors. Our long term goals are to improve diagnosis and risk prediction of TemporoMandibular Osteoarthritis in future multicenter studies.

The Spectrum of Data Science for Diagnosis of Osteoarthritis of the Temporomandibular Joint