Fred Feinberg

By |

My research examines how people make choices in uncertain environments. The general focus is on using statistical models to explain complex decision patterns, particularly involving sequential choices among related items (e.g., brands in the same category) and dyads (e.g., people choosing one another in online dating), as well as a variety of applications to problems in the marketing domain (e.g., models relating advertising exposures to awareness and sales). The main methods used lie primarily in discrete choice models, ordinarily estimated using Bayesian methods, dynamic programming, and nonparametrics. I’m particularly interested in extending Bayesian analysis to very large databases, especially in terms of ‘fusing’ data sets with only partly overlapping covariates to enable strong statistical identification of models across them.

Applying Bayesian Methods to Problems in Dynamic Choice

Applying Bayesian Methods to Problems in Dynamic Choice

 

Puneet Manchanda

By |

My interest is in using econometrics, especially Bayesian econometrics, and machine learning methods to infer causality. I tend to work with mostly parametric models of firm and consumer behavior to assess the effectiveness of firm actions. My work spans a variety of industries such as pharmaceuticals, e-commerce, gaming and hi-technology.

Jun Li

By |

Jun Li, PhD, is Assistant Professor in the department of Technology and Operations in the Ross School of Business at the University of Michigan, Ann Arbor.

Jun Li’s main research interests are empirical operations management and business analytics, with special emphases on revenue management, pricing, consumer behavior, economic and social networks. She has worked extensively with large-scale data, including transactions, pricing, inventory and capacity, consumer online search and click stream data, supply chain relationships and disruptions, clinical and healthcare claims. She is the Winner  of INFORMS Revenue Management and Pricing Practice Award for her close collaboration with retailing practitioners in implementing best response pricing algorithms. Her paper on airline pricing and consumer behavior is the finalist for Best Management Science Papers in Operations Management 2012 to 2014. She is also the principal investigator of a National Science Foundation funded project: “Gaining Visibility Into Supply Network Risks Using Large-Scale Textual Analysis”. Her work has enjoyed coverage by The Economist, New York Times and Forbes.

Supply Chain Risk Events

Supply Chain Risk Events

 

Barzan Mozafari

Barzan Mozafari

By |

Building data-intensive systems that are more scalable, more robust, and more predictable. He draws from advanced statistical models to deliver practical database solutions to real-world problems. In particular, he adapts concepts and tools from applied statistics, optimization theory, and machine learning.