Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.


Jodyn Platt

By |

Our team leads research on the Ethical, Legal, and Social Implications (ELSI) of learning health systems and related enterprises. Our research uses mixed methods to understand policies and practices that make data science methods (data collection and curation, AI, computable algorithms) trustworthy for patients, providers, and the public. Our work engages multiple stakeholders including providers and health systems, as well as the general public and minoritized communities on issues such as AI-enabled clinical decision support, data sharing and privacy, and consent for data use in precision oncology.

Michael Rubyan

By |

My research focuses on the development and evaluation of novel interventions that leverage emerging technologies to train members of the healthcare workforce around adhering to guidelines. I study how to scale custom designed teaching and learning platforms and evaluate their use to motivate effective communication and dissemination of evidence based practice. Other emphases of my work include health policy literacy, translation and communication of health services research, and improving health system literacy in urban communities. I have developed and evaluated numerous web based educational interventions that employ the “flipped classroom” design with an emphasis on understanding the data and analytics that guide successful implementation and promote high fidelity for members of the healthcare workforce. As an implementation scientist, I rely on the integration of data and analytics to understand what motivates successful program implementation.

In addition to the development of these platforms, I have extensive experience developing and evaluating online, hybrid residential, residential courses, and MOOCs related to healthcare management, non-profit management, healthcare finance, and health economics that employ engaging lessons and modules, interactive graphics, and a blended learning format to aid health professions students, and both undergraduate and graduate public health students in understanding the healthcare system. My MOOC entitled “Understanding and Improving the U.S. Health Care System” has been taken by over 5,000 learners and is characterized by the use of “big data” to understand how future healthcare providers learn health policy.

Rajiv Saran

By |

Dr. Saran is an internationally recognized expert in kidney disease research – specifically, in the area of kidney disease surveillance and epidemiology. From 2014 – 2019, he served as Director of the United States Renal Data System (USRDS; www.usrds.org), a ‘gold standard’ for kidney disease data systems, worldwide. Since 2006 he has been Co-Principal Investigator for the Centers for the Disease Control and Prevention’s (CDC’s) National CKD Surveillance System for the US, a one of a kind project that complements the USRDS, while focusing on upstream surveillance of CKD and its risk factors (www.cdc.org/ckd/surveillance). Both projects have influenced policy related to kidney disease in the US and were cited extensively in the July 2019 Advancing American Kidney Health Federal policy document. Dr. Saran led the development of the first National Kidney Disease Information System (VA-REINS), for the Department of Veterans Affairs (VA), funded by the VA’s Center for Innovation, and one that led to the VA recognizing the importance of kidney disease as a health priority for US veterans. Dr. Saran has recently (2018-2021) been funded on a spin off project from VA REINS for investigation of ‘hot-spot’ of kidney disease among US Veterans involving both risk-prediction and geospatial analyses – a modern approach to health system big data being used for prevention and population health improvement, using kidney disease as an example. This approach has broad application for prevention and optimizing management of major chronic diseases.

Stephan F. Taylor

By |

STEPHAN F. TAYLOR is a professor of psychiatry and Associate Chair for Research and Research Regulatory Affairs in the Department of Psychiatry; and an adjunct professor of psychology.

His work uses brain mapping and brain stimulation to study and treat serious mental disorders such as psychosis, refractory depression and obsessive-compulsive disorder. Data science techniques area applied in the analysis of high dimensional functional magnetic resonance imaging datasets and meso-scale brain networks, using supervised and unsupervised techniques to interrogate brain-behavior correlations relevant for psychopathological conditions. Clinical-translation work with brain stimulation, primarily with transcranial magnetic stimulation, is informed by mapping meso-scale networks to guide treatment of conditions such as depression. Future work seeks to use machine learning to identify treatment predictors and match individual patients to specific treatments.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Karandeep Singh

By |

I direct the Machine Learning for Learning Health Systems lab, whose work focuses on developing, validating, and evaluating the effectiveness of machine learning models within health systems. This includes projects such as a machine learning-supported patient educational platform (https://ask.musicurology.com) to support decision-making for patients with urological conditions. In additional to my predictive modeling research, I study patient-facing mobile apps and have published on this topic in Health Affairs, the Journal of General Internal Medicine, and the Clinical Journal of the American Society of Nephrology, among others. I have additional leadership roles that recognize my expertise in machine learning at a local and regional level. I chair the Michigan Medicine Clinical Intelligence Committee, which oversees implementation of predictive models across our health system, and I serve on the Michigan Economic Development Corporation’s Artificial Intelligence Advisory Board, where I contribute to the state of Michigan’s vision on artificial intelligence. I also teach a health data science and machine learning course to over 60 graduate students per year.

Akbar Waljee

By |

I use machine-learning techniques to implement decision support systems and tools that facilitate more personalized care for disease management and healthcare utilization to ultimately deliver efficient, effective, and equitable therapy for chronic diseases. To test and advance these general principles, I have built operational programs that are guiding—and improving—patient care in costly in low resource settings, including emerging countries.

Andrew Krumm

By |

My research examines the ways in which individuals and organizations use data to improve. Quality improvement and data-intensive research approaches are central to my work along with forming equitable collaborations between researchers and frontline workers. Prior to joining the Department of Learning Health Sciences, I was the Director of Learning Analytics Research at Digital Promise and a Senior Education Researcher in the Center for Technology in Learning at SRI International. At both organizations, I developed data-intensive research-practice partnerships with educational organizations of all types. As a learning scientist working at the intersection of data-intensive research and quality improvement, my colleagues and I have developed tools and strategies (e.g., cloud-based, open source tools for engaging in collaborative exploratory data analyses) that partnerships between researchers and practitioners can use to measure learning and improve learning environments.

This is an image that my colleagues and I, over multiple projects, developed to communicate the multiple steps involved in collaborative data-intensive improvement. The “organize” and “understand” phases are about asking the right questions before the work of data analysis begins: “co-develop” and “test” are about taking action following an analysis. Along with identifying common phases, we have also observed the importance of the following supporting conditions: a trusting partnership, the use of formal improvement methods, common data workflows, and intentional efforts to support the learning of everyone involved in the project.

Kean Ming Tan

By |

I am an applied statistician working on statistical machine learning methods for analyzing complex biomedical data sets. I develop multivariate statistical methods such as probabilistic graphical models, cluster analysis, discriminant analysis, and dimension reduction to uncover patterns from massive data set. Recently, I also work on topics related to robust statistics, non-convex optimization, and data integration from multiple sources.