Jordan Mckay

By |


Jordan McKay is a Project Associate Manager at MIDAS. An Ann Arbor native, Jordan received his Bachelors in Computer Science from University of Michigan, and his Masters in Information at the University of Michigan School of Information. Outside of business hours, Jordan also works as a conductor, concert pianist, and Music Director with a number of organizations in the Ann Arbor area.

In addition to his duties administrating the day-to-day operations for MIDAS, its website, its events, and its part-time staff, Jordan is an engaged member of the data science community. Jordan is a determined advocate for ethical AI, data sovereignty, accessibility, digital privacy, and humane information system design, and is proud to be a member of a team that is working to make data a force for good in our society.

Sara Lafia

By |

I am a Research Fellow in the Inter-university Consortium for Political and Social Research (ICPSR) at the University of Michigan. My research is currently supported by a NSF project, Developing Evidence-based Data Sharing and Archiving Policies, where I am analyzing curation activities, automatically detecting data citations, and contributing to metrics for tracking the impact of data reuse. I hold a Ph.D. in Geography from UC Santa Barbara and I have expertise in GIScience, spatial information science, and urban planning. My interests also include the Semantic Web, innovative GIS education, and the science of science. I have experience deploying geospatial applications, designing linked data models, and developing visualizations to support data discovery.

Rajiv Saran

By |

Dr. Saran is an internationally recognized expert in kidney disease research – specifically, in the area of kidney disease surveillance and epidemiology. From 2014 – 2019, he served as Director of the United States Renal Data System (USRDS;, a ‘gold standard’ for kidney disease data systems, worldwide. Since 2006 he has been Co-Principal Investigator for the Centers for the Disease Control and Prevention’s (CDC’s) National CKD Surveillance System for the US, a one of a kind project that complements the USRDS, while focusing on upstream surveillance of CKD and its risk factors ( Both projects have influenced policy related to kidney disease in the US and were cited extensively in the July 2019 Advancing American Kidney Health Federal policy document. Dr. Saran led the development of the first National Kidney Disease Information System (VA-REINS), for the Department of Veterans Affairs (VA), funded by the VA’s Center for Innovation, and one that led to the VA recognizing the importance of kidney disease as a health priority for US veterans. Dr. Saran has recently (2018-2021) been funded on a spin off project from VA REINS for investigation of ‘hot-spot’ of kidney disease among US Veterans involving both risk-prediction and geospatial analyses – a modern approach to health system big data being used for prevention and population health improvement, using kidney disease as an example. This approach has broad application for prevention and optimizing management of major chronic diseases.

Alex Gorodetsky

By |

Alex Gorodetsky’s research is at the intersection of applied mathematics, data science, and computational science, and is focused on enabling autonomous decision making under uncertainty. He is especially interested in controlling, designing, and analyzing autonomous systems that must act in complex environments where observational data and expensive computational simulations must work together to ensure objectives are achieved. Toward this goal, he pursues research in wide-ranging areas including uncertainty quantification, statistical inference, machine learning, control, and numerical analysis. His methodology is to increase scalability of probabilistic modeling and analysis techniques such as Bayesian inference and uncertainty quantification. His current strategies to achieving scalability revolve around leveraging computational optimal transport, developing tensor network learning algorithms, and creating new multi-fidelity information fusion approaches.

Sample workflow for enabling autonomous decision making under uncertainty for a drone operating in a complex environment. We develop algorithms to compress simulation data by exploiting problem structure. We then embed the compressed representations onto onboard computational resources. Finally, we develop approaches to enable the drone to adapt, learn, and refine knowledge by interacting with, and collecting data from, the environment.

S. Sandeep Pradhan

By |

My research interest include information theory, coding theory, distributed data processing, quantum information theory, quantum field theory.

Gregory S. Miller

By |

Greg’s research primarily investigates information flow in financial markets and the actions of agents in those markets – both consumers and producers of that information. His approach draws on theory from the social sciences (economics, psychology and sociology) combined with large data sets from diverse sources and a variety of data science approaches. Most projects combine data from across multiple sources, including commercial data bases, experimentally created data and extracting data from sources designed for other uses (commercial media, web scrapping, cellphone data etc.). In addition to a wide range of econometric and statistical methods, his work has included applying machine learning , textual analysis, mining social media, processes for missing data and combining mixed media.

Jim Omartian

By |

My research explores the interplay between corporate decisions and employee actions. I currently use anonymized mobile device data to observe individual behaviors, and employ both unsupervised and supervised machine learning techniques.

Libby Hemphill

By |

Dr. Hemphill studies conversations in social media and aims to promote just access to social media spaces and their data. She uses computational approaches to modeling political topics, predicting and addressing toxicity in online discussions, and tracing linguistic adaptations among extremists. She also studies digital data curation and is especially interested in ways to measure and model data reuse so that we can make informed decisions about how to allocate data resources.

Kentaro Toyama

By |

Kentaro Toyama is W. K. Kellogg Professor of Community Information at the University of Michigan School of Information and a fellow of the Dalai Lama Center for Ethics and Transformative Values at MIT. He is the author of “Geek Heresy: Rescuing Social Change from the Cult of Technology.” Toyama conducts interdisciplinary research to understand how the world’s low-income communities interact with digital technology and to invent new ways for technology to support their socio-economic development, including computer simulations of complex systems for policy-making. Previously, Toyama did research in artificial intelligence, computer vision, and human-computer interaction at Microsoft and taught mathematics at Ashesi University in Ghana.

Interacting with children at a Seva Mandir school in Rajasthan, India.