Mark Steven Cohen

By |

In his various roles, he has helped develop several educational programs in Innovation and Entrepreneurial Development (the only one of their kind in the world) for medical students, residents, and faculty as well as co-founding 4 start-up companies (including a consulting group, a pharmaceutical company, a device company, and a digital health startup) to improve the care of surgical patients and patients with cancer. He has given over 80 invited talks both nationally and internationally, written and published over 110 original scientific articles, 12 book chapters, as well as a textbook on “Success in Academic Surgery: Innovation and Entrepreneurship” published in 2019 by Springer-NATURE. His research is focused on drug development and nanoparticle drug delivery for cancer therapeutic development as well as evaluation of circulating tumor cells, tissue engineering for development of thyroid organoids, and evaluating the role of mixed reality technologies, AI and ML in surgical simulation, education and clinical care delivery as well as directing the Center for Surgical Innovation at Michigan. He has been externally funded for 13 consecutive years by donors and grants from Susan G. Komen Foundation, the American Cancer Society, and he currently has funding from three National Institute of Health R-01 grants through the National Cancer Institute. He has served on several grant study sections for the National Science Foundation, the National Institute of Health, the Department of Defense, and the Susan G. Komen Foundation. He also serves of several scientific journal editorial boards and has serves on committees and leadership roles in the Association for Academic Surgery, the Society of University Surgeons and the American Association of Endocrine Surgeons where he was the National Program Chair in 2013. For his innovation efforts, he was awarded a Distinguished Faculty Recognition Award by the University of Michigan in 2019. His clinical interests and national expertise are in the areas of Endocrine Surgery: specifically thyroid surgery for benign and malignant disease, minimally invasive thyroid and parathyroid surgery, and adrenal surgery, as well as advanced Melanoma Surgery including developing and running the hyperthermic isolated limb perfusion program for in transit metastatic melanoma (the only one in the state of Michigan) which is now one of the largest in the nation.

Xu Wang

By |

My research is to support more people learn in effective ways. I draw techniques and theories from Human-Computer Interaction, Learning Sciences, and Artificial Intelligence to develop computational methods and systems to support scalable teaching and learning. There are several directions in my research that draw on data science techniques and also contribute to interdisciplinary data science research, 1) data-driven authoring techniques of intelligent tutoring systems, with application domains in UX education and data science education 2) AI-augmented instructional design and the use Human-AI collaborative techniques in instructional design.

Rajiv Saran

By |

Dr. Saran is an internationally recognized expert in kidney disease research – specifically, in the area of kidney disease surveillance and epidemiology. From 2014 – 2019, he served as Director of the United States Renal Data System (USRDS; www.usrds.org), a ‘gold standard’ for kidney disease data systems, worldwide. Since 2006 he has been Co-Principal Investigator for the Centers for the Disease Control and Prevention’s (CDC’s) National CKD Surveillance System for the US, a one of a kind project that complements the USRDS, while focusing on upstream surveillance of CKD and its risk factors (www.cdc.org/ckd/surveillance). Both projects have influenced policy related to kidney disease in the US and were cited extensively in the July 2019 Advancing American Kidney Health Federal policy document. Dr. Saran led the development of the first National Kidney Disease Information System (VA-REINS), for the Department of Veterans Affairs (VA), funded by the VA’s Center for Innovation, and one that led to the VA recognizing the importance of kidney disease as a health priority for US veterans. Dr. Saran has recently (2018-2021) been funded on a spin off project from VA REINS for investigation of ‘hot-spot’ of kidney disease among US Veterans involving both risk-prediction and geospatial analyses – a modern approach to health system big data being used for prevention and population health improvement, using kidney disease as an example. This approach has broad application for prevention and optimizing management of major chronic diseases.

Elliott Rouse

By |

My reserach group–theNeurobionics Lab–has two chief goals. Firstly, we seek to answer fundamental questions about human locomotion through a deeper understanding of how limb mechanics are felt and regulated by the nervous system. These properties are important because they govern how people respond to disturbances during gait, such as unexpectedly stepping on an obstacle, or carefully walking over uneven terrain. Moreover, the ability to regulate these mechanics is drastically impaired following neurological injury. As a result, impaired individuals fall more frequently, fatigue faster, and have abnormal gait patterns that inhibit daily life. The more we understand about how the brain controls the body during locomotion, the better we can assess, track, and treat the changes that occur following neurological injury.

The second mission of the group is to develop technologies that address the deficits that arise from neuropathologies and amputation. We leverage biomimetic design and control approaches to develop novel wearable robotic systems. Our intent is to not only address the locomotor deficits of these individuals, but also enable them to exceed the performance of their able-bodied counterparts. Our approach is unique: the biomechanical science that we discover is used to develop a new class of assistive technology. Through interdisciplinary, bidirectional feedback between science and engineering, the Neurobionics Lab conducts innovative work that will eventually impact the lives of the disabled.

Ranjan Pal

By |

Cyber-security is a complex and multi-dimensional research field. My research style comprises an inter-disciplinary (primarily rooted in economics, econometrics, data science (AI/ML/Bayesian and Frequentist Statistics), game theory, and network science) investigation of major socially pressing issues impacting the quality of cyber-risk management in modern networked and distributed engineering systems such as IoT-driven critical infrastructures, cloud-based service networks, and app-based systems (e.g., mobile commerce, smart homes) to name a few. I take delight in proposing data-driven, rigorous, and interdisciplinary solutions to both, existing fundamental challenges that pose a practical bottleneck to (cost) effective cyber-risk management, and futuristic cyber-security and privacy issues that might plague modern (networked) engineering systems. I strongly strive for originality, practical significance, and mathematical rigor in my solutions. One of my primary end goals is to conceptually get arms around complex, multi-dimensional information security and privacy problems in a way that helps, informs, and empowers practitioners and policy makers to take the right steps in making the cyber-space more secure.

Albert Shih

By |

My research is focused on the human biometric data (such as motion) to guide the design and manufacturing of assistive and proactive devices. Embedded and external sensors generate ample data which require scientific approaches to analyze and create knowledge. I have worked closely with the University of Michigan Orthotics and Prosthetics Center in the design and manufacturing of custom assistive devices using 3D-printing and cyber-based design. The goal is to create a cyber-physical system that can acquire the data from scanning, sensors, human motion, user feedback, clinician diagnosis into quantitative health metrics and guidelines to improve the quality of care for people with needs.

Stephan F. Taylor

By |

STEPHAN F. TAYLOR is a professor of psychiatry and Associate Chair for Research and Research Regulatory Affairs in the Department of Psychiatry; and an adjunct professor of psychology.

His work uses brain mapping and brain stimulation to study and treat serious mental disorders such as psychosis, refractory depression and obsessive-compulsive disorder. Data science techniques area applied in the analysis of high dimensional functional magnetic resonance imaging datasets and meso-scale brain networks, using supervised and unsupervised techniques to interrogate brain-behavior correlations relevant for psychopathological conditions. Clinical-translation work with brain stimulation, primarily with transcranial magnetic stimulation, is informed by mapping meso-scale networks to guide treatment of conditions such as depression. Future work seeks to use machine learning to identify treatment predictors and match individual patients to specific treatments.

Amanda Kowalski

By |

Professor Kowalski’s recent research analyzes experiments and clinical trials with the goal of designing policies to target insurance expansions and medical treatments to individuals who stand to benefit from them the most. Her research has also explored the impact of previous Medicaid expansions, the Affordable Care Act, the Massachusetts health reform of 2006, and employer-sponsored health insurance plans. She has also used cutting-edge techniques to estimate the value of medical spending on at-risk newborns.

 

 

Lorraine Buis

By |

I conduct research on the use of consumer-facing technologies for chronic disease self management. My work predominantly centers on the use of mobile applications that collect and manage patient generated health data overt time.

Robert Ploutz-Snyder

By |

My work falls into three general application areas. I am an applied (accredited) biostatistician with a strong team science motivation and I collaborate with scientists in primarily the biomedical sciences, contributing expertise in experimental design, statistical analysis/modeling, and data visualization. I have held faculty appointments in Schools of Medicine and Nursing, and also worked as a senior scientist in the Human Research Program at the NASA Johnson Space Center. I currently direct an Applied Biostatistics Laboratory and Data Management Core within the UM School of Nursing, and maintain several collaborative research programs within the School, at NASA, and with collaborators elsewhere.