Lucia Cevidanes

By |

We have developed and tested machine learning approaches to integrate quantitative markers for diagnosis and assessment of progression of TMJ OA, as well as extended the capabilities of 3D Slicer4 into web-based tools and disseminated open source image analysis tools. Our aims use data processing and in-depth analytics combined with learning using privileged information, integrated feature selection, and testing the performance of longitudinal risk predictors. Our long term goals are to improve diagnosis and risk prediction of TemporoMandibular Osteoarthritis in future multicenter studies.

The Spectrum of Data Science for Diagnosis of Osteoarthritis of the Temporomandibular Joint

Joshua Stein

By |

As a board-certified ophthalmologist and glaucoma specialist, I have more than 15 years of clinical experience caring for patients with different types and complexities of glaucoma. In addition to my clinical experience, as a health services researcher, I have developed experience and expertise in several disciplines including performing analyses using large health care claims databases to study utilization and outcomes of patients with ocular diseases, racial and other disparities in eye care, associations between systemic conditions or medication use and ocular diseases. I have learned the nuances of various data sources and ways to maximize our use of these data sources to answer important and timely questions. Leveraging my background in HSR with new skills in bioinformatics and precision medicine, over the past 2-3 years I have been developing and growing the Sight Outcomes Research Collaborative (SOURCE) repository, a powerful tool that researchers can tap into to study patients with ocular diseases. My team and I have spent countless hours devising ways of extracting electronic health record data from Clarity, cleaning and de-identifying the data, and making it linkable to ocular diagnostic test data (OCT, HVF, biometry) and non-clinical data. Now that we have successfully developed such a resource here at Kellogg, I am now collaborating with colleagues at > 2 dozen academic ophthalmology departments across the country to assist them with extracting their data in the same format and sending it to Kellogg so that we can pool the data and make it accessible to researchers at all of the participating centers for research and quality improvement studies. I am also actively exploring ways to integrate data from SOURCE into deep learning and artificial intelligence algorithms, making use of SOURCE data for genotype-phenotype association studies and development of polygenic risk scores for common ocular diseases, capturing patient-reported outcome data for the majority of eye care recipients, enhancing visualization of the data on easy-to-access dashboards to aid in quality improvement initiatives, and making use of the data to enhance quality of care, safety, efficiency of care delivery, and to improve clinical operations. .

John Silberholz

By |

Most of my research related to data science involves decision making around clinical trials. In particular, I am interested in how databases of past clinical trial results can inform future trial design and other decisions. Some of my work has involved using machine learning and mathematical optimization to design new combination therapies for cancer based on the results of past trials. Other work has used network meta-analysis to combine the results of randomized controlled trials (RCTs) to better summarize what is currently known about a disease, to design further trials that would be maximally informative, and to study the quality of the control arms used in Phase III trials (which are used for drug approvals). Other work combines toxicity data from clinical trials with toxicity data from other data sources (claims data and adverse event reporting databases) to accelerate detection of adverse drug reactions to newly approved drugs. Lastly, some of my work uses Bayesian inference to accelerate clinical trials with multiple endpoints, learning the link between different endpoints using past clinical trial results.

Nicholas Douville

By |

Dr. Douville is a critical care anesthesiologist with an investigative background in bioinformatics and perioperative outcomes research. He studies techniques for utilizing health care data, including genotype, to deliver personalized medicine in the perioperative period and intensive care unit. His research background has focused on ways technology can assist health care delivery to improve patient outcomes. This began designing microfluidic chips capable of recreating fluid mechanics of atelectatic alveoli and monitoring the resulting barrier breakdown real-time. His interest in bioinformatics was sparked when he observed how methodology designed for tissue engineering could be modified to the nano-scale to enable genomic analysis. Additionally, his engineering training provided the framework to apply data-driven modeling techniques, such as finite element analysis, to complex biological systems.

Akbar Waljee

By |

I use machine-learning techniques to implement decision support systems and tools that facilitate more personalized care for disease management and healthcare utilization to ultimately deliver efficient, effective, and equitable therapy for chronic diseases. To test and advance these general principles, I have built operational programs that are guiding—and improving—patient care in costly in low resource settings, including emerging countries.

Thomas Valley

By |

Dr. Valley’s research focuses on understanding and improving decision-making in the intensive care unit (ICU). His primary line of research seeks to identify the patients most likely to benefit from intensive care, allowing clinicians to safely triage patients between the ICU and the general ward. Ultimately, he hopes to identify ICU-based therapies that can be transferred to the general ward to improve hospital efficiency and reduce healthcare costs. Dr. Valley’s research interests also include enhancing diagnosis in critical illness, improving the ICU experience for family members of ICU patients, and reducing barriers to cost-effective pulmonary and critical care.

Andrew J. Admon, MD, MPH, MSc

By |

I am a pulmonary and critical care physician who is passionate about improving critical care delivery by applying advanced methods for causal inference to observational data. My prior work has leveraged real-world data clinical and administrative data to study the epidemiology of critical illness, the organization of critical care, and health care financing.

My current work leverages real-world clinical data to understand whether and how care team fragmentation (transitions of physicians and other providers while a patient is still hospitalized) influences clinical outcomes like survival and recovery. Answering these questions correctly requires methods that are attentive to the complex causal structure underlying the relationship, depicted here. It features time-varying exposures (A), confounders (L), and mediators (M), all of which can influence clinical outcomes (Y). Arrows in the figure identify directional (i.e., causal) relationships between variables.

Deanna Isaman

By |

My applied research focuses on simulation models of the progression of multiple chronic complications and comorbidities of diabetes and its precursors. I study the effectiveness and cost-effectiveness of early interventions in the progression of diabetes. My methodological research synthesizes secondary data from complementary studies to model complex processes.

Lorraine Buis

By |

I conduct research on the use of consumer-facing technologies for chronic disease self management. My work predominantly centers on the use of mobile applications that collect and manage patient generated health data overt time.