Achyuta Adhvaryu

By |

My data science-related work deals with predicting productivity of entry-level workers using applicants’ psychometric profiles. The work has relevance for the design of AI-based hiring, job search for unemployed workers, sectoral transitions (particularly for entry-level workers), and the design of optimal incentive contracts based on worker type.

Kathleen Sienko

By |

Age- and sensory-related deficits in balance function drastically impact quality of life and present long-term care challenges. Successful fall prevention programs include balance exercise regimes, designed to recover, retrain, or develop new sensorimotor strategies to facilitate functional mobility. Effective balance-training programs require frequent visits to the clinic and/or the supervision of a physical therapist; however, one-on-one guided training with a physical therapist is not scalable for long-term balance training preventative and therapeutic programs. To enable preventative and therapeutic at-home balance training, we aim to develop models for automatically 1) evaluating balance and, 2) delivering personalized training guidance for community dwelling OA and people with sensory disabilities.

Smart Phone Balance Trainer

Kentaro Toyama

By |

Kentaro Toyama is W. K. Kellogg Professor of Community Information at the University of Michigan School of Information and a fellow of the Dalai Lama Center for Ethics and Transformative Values at MIT. He is the author of “Geek Heresy: Rescuing Social Change from the Cult of Technology.” Toyama conducts interdisciplinary research to understand how the world’s low-income communities interact with digital technology and to invent new ways for technology to support their socio-economic development, including computer simulations of complex systems for policy-making. Previously, Toyama did research in artificial intelligence, computer vision, and human-computer interaction at Microsoft and taught mathematics at Ashesi University in Ghana.

Interacting with children at a Seva Mandir school in Rajasthan, India.

Veera Baladandayuthapani

By |

Dr. Veera Baladandayuthapani is currently a Professor in the Department of Biostatistics at University of Michigan (UM), where he is also the Associate Director of the Center for Cancer Biostatistics. He joined UM in Fall 2018 after spending 13 years in the Department of Biostatistics at University of Texas MD Anderson Cancer Center, Houston, Texas, where was a Professor and Institute Faculty Scholar and held adjunct appointments at Rice University, Texas A&M University and UT School of Public Health. His research interests are mainly in high-dimensional data modeling and Bayesian inference. This includes functional data analyses, Bayesian graphical models, Bayesian semi-/non-parametric models and Bayesian machine learning. These methods are motivated by large and complex datasets (a.k.a. Big Data) such as high-throughput genomics, epigenomics, transcriptomics and proteomics as well as high-resolution neuro- and cancer- imaging. His work has been published in top statistical/biostatistical/bioinformatics and biomedical/oncology journals. He has also co-authored a book on Bayesian analysis of gene expression data. He currently holds multiple PI-level grants from NIH and NSF to develop innovative and advanced biostatistical and bioinformatics methods for big datasets in oncology. He has also served as the Director of the Biostatistics and Bioinformatics Cores for the Specialized Programs of Research Excellence (SPOREs) in Multiple Myeloma and Lung Cancer and Biostatistics&Bioinformatics platform leader for the Myeloma and Melanoma Moonshot Programs at MD Anderson. He is a fellow of the American Statistical Association and an elected member of the International Statistical Institute. He currently serves as an Associate Editor for Journal of American Statistical Association, Biometrics and Sankhya.

 

An example of horizontal (across cancers) and vertical (across multiple molecular platforms) data integration. Image from Ha et al (Nature Scientific Reports, 2018; https://www.nature.com/articles/s41598-018-32682-x)

Mousumi Banerjee

By |

My research is primarily focused around 1) machine learning methods for understanding healthcare delivery and outcomes in the population, 2) analyses of correlated data (e.g. longitudinal and clustered data), and 3) survival analysis and competing risks analyses. We have developed tree-based and ensemble regression methods for censored and multilevel data, combination classifiers using different types of learning methods, and methodology to identify representative trees from an ensemble. These methods have been applied to important areas of biomedicine, specifically in patient prognostication, in developing clinical decision-making tools, and in identifying complex interactions between patient, provider, and health systems for understanding variations in healthcare utilization and delivery. My substantive areas of research are cancer and pediatric cardiovascular disease.

Michael Cafarella

By |

Michael Cafarella, PhD, is Associate Professor of Electrical Engineering and Computer Science, College of Engineering and Faculty Associate, Survey Research Center, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Cafarella’s research focuses on data management problems that arise from extreme diversity in large data collections. Big data is not just big in terms of bytes, but also type (e.g., a single hard disk likely contains relations, text, images, and spreadsheets) and structure (e.g., a large corpus of relational databases may have millions of unique schemas). As a result, certain long-held assumptions — e.g., that the database schema is always known before writing a query — are no longer useful guides for building data management systems. As a result, my work focuses heavily on information extraction and data mining methods that can either improve the quality of existing information or work in spite of lower-quality information.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

A peek inside a Michigan data center! My students and I visit whenever I am teaching EECS485, which teaches many modern data-intensive methods and their application to the Web.

Charu Chandra

By |

My research interests are in developing inter-disciplinary knowledge in System Informatics, as the basis for study of complex system problems with the fusion of theory, computation, and application components adopted from Systems and Informatics fields. In this framework, a complex system such as the supply chain is posited as a System-of-Systems; i.e., a collection of individual business entities organized as a composite system with their resources and capabilities pooled to obtain an interoperable and synergistic system, possessing common and shared goals and objectives. Informatics facilitates coordination and integration in the system by processing and sharing information among supply chain entities for improved decision-making.

A common theme of my research is the basic foundation of universality of system and the realization that what makes it unique is its environment. This has enabled to categorize problems, designs, models, methodologies, and solution techniques at macro and micro levels and develop innovative solutions by coordinating these levels in an integrated environment.

My goal is to study the efficacy of the body of knowledge available in Systems Theory, Information Science, Artificial Intelligence & Knowledge Management, Management Science, Industrial Engineering and Operations Research fields; applied uniquely to issues and problems of complex systems in the manufacturing and service sectors.

Theoretical work investigated by me in this research thrust relates to:

  • Developing Generalized System Taxonomies and Ontologies for complex systems management.
  • Experimenting with Problem Taxonomies for design and modeling efficiencies in complex system networks.
  • Developing methodologies, frameworks and reference models for complex systems management.
  • Computation and application development focused on developing algorithms and software development for:
    • Supply chain information system and knowledge library using Web-based technology as a dissemination tool.
    • Integration with Enterprise Resource Planning modules in SAP software.
    • Supply chain management problem-solving through application of problem specific simulation and optimization.

My research has extended to application domains in healthcare, textiles, automotive, and defense sectors. Problems and issues addressed relate to health care management, operationalizing of sustainability, energy conservation, global logistics management, mega-disaster recovery, humanitarian needs management, and entrepreneurship management.

Currently, my application focus is on expanding the breadth and depth of inquiry in the healthcare domain. Among the topics being investigated are: (1) the organization and structure of health care enterprises; and (2) operations and strategies that relate to management of critical success factors, such as costs, quality, innovation and technology adoption by health care providers. Two significant topics that I have chosen to study with regard to care for elderly patients suffering from chronic congestive heart failure and hypertension are: (1) the design of patient-centered health care delivery to improve quality of care; and (2) managing enhanced care costs due to readmission of these patients.

Data science applications: Real-time data processing in supply chains, Knowledge portals for decision-making in supply chains, information sharing for optimizing patient-centered healthcare delivery

Robert J. Franzese Jr.

By |

Exploring properties of spatial-econometric methods for valid estimation of interdependent processes, i.e., estimation of spatially & spatiotemporally dynamic responses, primarily in political science and political economy applications. Specific applications have included international tax-competition and national tax & other economic policies, U.S. inter-state policy diffusion, the (possibly contagious) spread of intra- and inter-state conflict.

franzese-image-1024x576

 

Muzammil M. Hussain

By |

Muzammil M. Hussain is Assistant Professor of Communication and Media, Faculty Associate at the U-M International Institute and the U-M Institute for Social Research, and Faculty Affiliate at the U-M Ford School of Public Policy’s Science, Technology, and Public Policy Program (STPP) and the Michigan Institute for Data Science (MIDAS). Dr. Hussain’s interdisciplinary research is at the intersections of global communication, social analytics, and technology governance. At Michigan, Professor Hussain teaches courses on digital politics, research methods, and global innovation. He has authored numerous research articles, book chapters, and industry reports examining global ICT politics, innovation, and policy, including pieces in The Journal of Democracy, The Journal of International Affairs, The Brookings Institutions’ Issues in Technology and Innovation, The InterMedia Institute’s Development Research Series, International Studies Review, International Journal of Middle East Affairs, The Communication Review, Policy and Internet, and Journalism: Theory, Practice, and Criticism.