Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Meha Jain

By |

​I am an Assistant Professor in the School for Environment and Sustainability at the University of Michigan and am part of the Sustainable Food Systems Initiative. My research examines the impacts of environmental change on agricultural production, and how farmers may adapt to reduce negative impacts. I also examine ways that we can sustainably enhance agricultural production. To do this work, I combine remote sensing and geospatial analyses with household-level and census datasets to examine farmer decision-making and agricultural production across large spatial and temporal scales.

Conducting wheat crop cuts to measure yield in India, which we use to train algorithms that map yield using satellite data

Joyojeet Pal

By |

My research examines the social media behavior of politicians. Using machine learning methods to curate lists of Twitter accounts by class, such as politicians, journalists, influencers, etc, I research temporal and topical patterns of how political communication – including campaign outreach, network alignments, hate speech, and polarization play out online before, during, and after major electoral campaigns. My work is primarily based on Twitter data, using the Twitter academic API to pull amd store tweets of accounts identified through an iterative process of shortlisting handles of interest. Thereafter, we use amix of descriptives and advanced statistical techniques to seek patterns in the data.

Edgar Franco-Vivanco

By |

Edgar Franco-Vivanco is an Assistant Professor of Political Science and a faculty associate at the Center for Political Studies. His research interests include Latin American politics, historical political economy, criminal violence, and indigenous politics.

Prof. Franco-Vivanco is interested in implementing machine learning tools to improve the analysis of historical data, in particular handwritten documents. He is also working in the application of text analysis to study indigenous languages. In a parallel research agenda, he explores how marginalized communities interact with criminal organizations and abusive policing in Latin America. As part of this research, he is using NLP tools to identify different types of criminal behavior.

Examples of the digitization process of handwritten documents from colonial Mexico.

Rajiv Saran

By |

Dr. Saran is an internationally recognized expert in kidney disease research – specifically, in the area of kidney disease surveillance and epidemiology. From 2014 – 2019, he served as Director of the United States Renal Data System (USRDS; www.usrds.org), a ‘gold standard’ for kidney disease data systems, worldwide. Since 2006 he has been Co-Principal Investigator for the Centers for the Disease Control and Prevention’s (CDC’s) National CKD Surveillance System for the US, a one of a kind project that complements the USRDS, while focusing on upstream surveillance of CKD and its risk factors (www.cdc.org/ckd/surveillance). Both projects have influenced policy related to kidney disease in the US and were cited extensively in the July 2019 Advancing American Kidney Health Federal policy document. Dr. Saran led the development of the first National Kidney Disease Information System (VA-REINS), for the Department of Veterans Affairs (VA), funded by the VA’s Center for Innovation, and one that led to the VA recognizing the importance of kidney disease as a health priority for US veterans. Dr. Saran has recently (2018-2021) been funded on a spin off project from VA REINS for investigation of ‘hot-spot’ of kidney disease among US Veterans involving both risk-prediction and geospatial analyses – a modern approach to health system big data being used for prevention and population health improvement, using kidney disease as an example. This approach has broad application for prevention and optimizing management of major chronic diseases.

Achyuta Adhvaryu

By |

My data science-related work deals with predicting productivity of entry-level workers using applicants’ psychometric profiles. The work has relevance for the design of AI-based hiring, job search for unemployed workers, sectoral transitions (particularly for entry-level workers), and the design of optimal incentive contracts based on worker type.

Kathleen Sienko

By |

Age- and sensory-related deficits in balance function drastically impact quality of life and present long-term care challenges. Successful fall prevention programs include balance exercise regimes, designed to recover, retrain, or develop new sensorimotor strategies to facilitate functional mobility. Effective balance-training programs require frequent visits to the clinic and/or the supervision of a physical therapist; however, one-on-one guided training with a physical therapist is not scalable for long-term balance training preventative and therapeutic programs. To enable preventative and therapeutic at-home balance training, we aim to develop models for automatically 1) evaluating balance and, 2) delivering personalized training guidance for community dwelling OA and people with sensory disabilities.

Smart Phone Balance Trainer

Kentaro Toyama

By |

Kentaro Toyama is W. K. Kellogg Professor of Community Information at the University of Michigan School of Information and a fellow of the Dalai Lama Center for Ethics and Transformative Values at MIT. He is the author of “Geek Heresy: Rescuing Social Change from the Cult of Technology.” Toyama conducts interdisciplinary research to understand how the world’s low-income communities interact with digital technology and to invent new ways for technology to support their socio-economic development, including computer simulations of complex systems for policy-making. Previously, Toyama did research in artificial intelligence, computer vision, and human-computer interaction at Microsoft and taught mathematics at Ashesi University in Ghana.

Interacting with children at a Seva Mandir school in Rajasthan, India.

Veera Baladandayuthapani

By |

Dr. Veera Baladandayuthapani is currently a Professor in the Department of Biostatistics at University of Michigan (UM), where he is also the Associate Director of the Center for Cancer Biostatistics. He joined UM in Fall 2018 after spending 13 years in the Department of Biostatistics at University of Texas MD Anderson Cancer Center, Houston, Texas, where was a Professor and Institute Faculty Scholar and held adjunct appointments at Rice University, Texas A&M University and UT School of Public Health. His research interests are mainly in high-dimensional data modeling and Bayesian inference. This includes functional data analyses, Bayesian graphical models, Bayesian semi-/non-parametric models and Bayesian machine learning. These methods are motivated by large and complex datasets (a.k.a. Big Data) such as high-throughput genomics, epigenomics, transcriptomics and proteomics as well as high-resolution neuro- and cancer- imaging. His work has been published in top statistical/biostatistical/bioinformatics and biomedical/oncology journals. He has also co-authored a book on Bayesian analysis of gene expression data. He currently holds multiple PI-level grants from NIH and NSF to develop innovative and advanced biostatistical and bioinformatics methods for big datasets in oncology. He has also served as the Director of the Biostatistics and Bioinformatics Cores for the Specialized Programs of Research Excellence (SPOREs) in Multiple Myeloma and Lung Cancer and Biostatistics&Bioinformatics platform leader for the Myeloma and Melanoma Moonshot Programs at MD Anderson. He is a fellow of the American Statistical Association and an elected member of the International Statistical Institute. He currently serves as an Associate Editor for Journal of American Statistical Association, Biometrics and Sankhya.

 

An example of horizontal (across cancers) and vertical (across multiple molecular platforms) data integration. Image from Ha et al (Nature Scientific Reports, 2018; https://www.nature.com/articles/s41598-018-32682-x)