Explore ARCExplore ARC

Kathleen M Bergen

By |

Kathleen M Bergen, PhD, is Associate Research Scientist in the School for Environment and Sustainability at the University of Michigan, Ann Arbor. Dr. Bergen currently has interim administrative oversight of the SEAS Environmental Spatial Analysis Laboratory (ESALab) and is interim Director of the campus-wide Graduate Certificate Program in Spatial Analysis.

Prof. Bergen works in the areas of human dimensions of environmental change; remote sensing, GIS and biodiversity informatics; and environmental health and informatics. Her focus is on combining field and geospatial data and methods to study the pattern and process of ecological systems, biodiversity and health. She also strives to build bridges between science and social science to understand the implications of human actions on the social and natural systems of which we are a part. She teaches courses in Remote Sensing and Geographic Information Systems. Formerly she served as a founding member of the UM LIbrary’s MIRLYN implementation team, directed the University Map Collection, and set up the M-Link reference information network.

Ming Xu

By |

My research focuses on developing and applying computational and data-enabled methodology in the broader area of sustainability. Main thrusts are as follows:

  1. Human mobility dynamics. I am interested in mining large-scale real-world travel trajectory data to understand human mobility dynamics. This involves the processing and analyzing travel trajectory data, characterizing individual mobility patterns, and evaluating environmental impacts of transportation systems/technologies (e.g., electric vehicles, ride-sharing) based on individual mobility dynamics.
  2. Global supply chains. Increasingly intensified international trade has created a connected global supply chain network. I am interested in understanding the structure of the global supply chain network and economic/environmental performance of nations.
  3. Networked infrastructure systems. Many infrastructure systems (e.g., power grid, water supply infrastructure) are networked systems. I am interested in understanding the basic structural features of these systems and how they relate to the system-level properties (e.g., stability, resilience, sustainability).

A network visualization (force-directed graph) of the 2012 US economy using the industry-by-industry Input-Output Table (15 sectors) provided by BEA. Each node represents a sector. The size of the node represents the economic output of the sector. The size and darkness of links represent the value of exchanges of goods/services between sectors. An interactive version and other data visualizations are available at http://mingxugroup.org/

William Currie

By |

Bill Currie studies how physical, chemical, and ecological processes work together in the functioning of ecosystems such as forests and wetlands.  He studies how human impacts and management alter key ecosystem responses including nutrient retention, carbon storage, plant species interactions, and plant productivity.   Dr. Currie uses computer models of ecosystems, including models in which he leads the development team, to explore ecosystem function across the spectrum from wildland to heavily human-impacted systems.  He often works in collaborative groups where a model is used to provide synthesis.  

He is committed to the idea that researchers must work together across traditional fields to address the complex environmental and sustainability issues of the 21st century.  He collaborates with field ecologists, geographers, remote sensing scientists, hydrologists, and land management professionals.

 

Jerome P. Lynch

By |

Jerome P. Lynch, PhD, is Professor and Donald Malloure Department Chair of the Civil and Environmental Engineering Department in the College of Engineering in the University of Michigan, Ann Arbor.

Prof. Lynch’s group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets, they collect from operational infrastructure systems, and undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, their algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of Prof. Lynch’s work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

Peter X. K. Song

By |

Dr. Song interested in the development and application of theories and methodologies from Data Science to solve scientific problems arising from medical and public health sciences, in particular from the fields of environmental health sciences and nutritional sciences. People from his lab are strongly interested in interdisciplinary research in the areas of statistics, operation research, and machine learning, with the core interest in the statistical foundation of big data analytics, and with target applications in processing and analyzing big data from various applied sciences, including asthma, environmental health sciences, nephrology, and nutritional sciences. His research projects have been funded by NIH, NSF and DARPA funding agencies. Visit Song Lab webpage for detail: http://www.umich.edu/~songlab/

Stilian A. Stoev

By |

Stilian Stoev’s research is in the area of applied probability and statistics for stochastic processes with emphasis on extremes, heavy tails, self-similarity, and long-range dependence. His recent theoretical contributions are in the area of max-stable processes, which is the class of processes emerging as a canonical model for the dependence in the extremes. This includes the representation, characterization, ergodicity, mixing, and prediction for this class of processes. Dr. Stoev is also working on applied problems in the area of computer network traffic monitoring, analysis and modeling. A recent joint project focuses on developing efficient statistical methods and algorithms for the visualization and analysis of fast multi-gigabit network traffic streams, which can help unveil the structure of traffic flows, detect anomalies and cyber attacks in real-time. This involves advanced low-level packet capture, efficient computation and rapid communication of summary statistics using non-relational data bases. More broadly, Dr. Stoev’s research is motivated by large-scale and data intensive applied problems arising in the areas of:

  1. environmental, weather and climate extremes.
  2. insurance and finance.
  3. Internet traffic monitoring, modeling and prediction.
Hash-binned array of 10+Gbps traffic stream measured at Merit Network. Bin (i,j) corresponds to traffic intensity in bytes of the data transferred from source IPs hashed in bin i with corresponding destination IPs hashed in bin j. The picture corresponds to a 10 second aggregation period. Bright horizontal lines indicate server-type communication from one bin to many, while unusual vertical lines are indicative of distributed denial of service (DDoS) type many-to-one attacks. The data were obtained using the PF_RING module in zero-copy mode, which by-passes the OS kernel and processes all packets passing through the interface. These and related statistical summaries derived via a recently developed AMON (All packet MONintoring) framework allows for a near-instantaneous visualization and automatic detection of structural changes in the network traffic conditions.

Hash-binned array of 10+Gbps traffic stream measured at Merit Network. Bin (i,j) corresponds to traffic intensity in bytes of the data transferred from source IPs hashed in bin i with corresponding destination IPs hashed in bin j. The picture corresponds to a 10 second aggregation period. Bright horizontal lines indicate server-type communication from one bin to many, while unusual vertical lines are indicative of distributed denial of service (DDoS) type many-to-one attacks.
The data were obtained using the PF_RING module in zero-copy mode, which by-passes the OS kernel and processes all packets passing through the interface. These and related statistical summaries derived via a recently developed AMON (All packet MONintoring) framework allows for a near-instantaneous visualization and automatic detection of structural changes in the network traffic conditions.

Arun Agrawal

By |

Arun Agrawal, PhD, is the Samuel Trask Dana Professor in the School of Environment and Sustainability at the University of Michigan, Ann Arbor.  Prof. Agrawal emphasizes the politics of international development, institutional change, and environmental conservation in his research and teaching. He has written critically on indigenous knowledge, community-based conservation, common property, population resources, and environmental identities. Prof. Agrawal is the coordinator for the International Forestry Resources and Institutions network and is currently carrying out research in central and east Africa as well as South Asia. Since 2013, Prof. Agrawal has served as the editor-in-chief of World Development and his recent work has appeared in Science, PNAS, Conservation Biology, Development and Change, among other journals. Preceding his work at U-M, Prof. Agrawal was educated at Duke University, the Indian Institute of Management, and Delhi University and has held teaching and research positions at Yale, Florida, McGill, Berkeley, and Harvard among other universities.

Selected papers and book chapters are available online and can be accessed at this link.

Additional science information available at World Science News

 

Yves Atchade

By |

My current research explores the possibilities and limits of Markov Chain Monte Carlo (MCMC) methods in dealing with posterior or quasi-posterior distributions that arise from high-dimensional Bayesian (or quasi-Bayesian) inference in regression and graphical models. I also have some interests in optimization, and these revolve around the use of stochastic methods: whether (and how) the use of stochastic methods can help tackle large scale optimization problems of interest in statistics. I also have interests in the use of remote sensing data to study social and environmental issues in Africa.