Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Meha Jain

Meha Jain

By |

​I am an Assistant Professor in the School for Environment and Sustainability at the University of Michigan and am part of the Sustainable Food Systems Initiative. My research examines the impacts of environmental change on agricultural production, and how farmers may adapt to reduce negative impacts. I also examine ways that we can sustainably enhance agricultural production. To do this work, I combine remote sensing and geospatial analyses with household-level and census datasets to examine farmer decision-making and agricultural production across large spatial and temporal scales.

Conducting wheat crop cuts to measure yield in India, which we use to train algorithms that map yield using satellite data

Wentao Wang

By |

Dr. Wentao Wang is currently a research faculty in the Department of Civil and Environmental Engineering at the University of Michigan, Ann Arbor, MI, United States. He obtained his Ph.D. degree in 2016 from Harbin Institute of Technology, supervised by Prof. Hui Li and Prof. Jerome P. Lynch

Ayumi Fujisaki-Manome

By |

Fujisaki-Manome’s research program aims to improve predictability of hazardous weather, ice, and lake/ocean events in cold regions in order to support preparedness and resilience in coastal communities, as well as improve the usability of their forecast products by working with stakeholders. The main question Fujisaki-Manome’s research aims to address is: what are the impacts of interactions between ice and oceans / ice and lakes on larger scale phenomena, such as climate, weather, storm surges, and sea/lake ice melting? Fujisaki-Manome primarily uses numerical geophysical modeling and machine learning to address the research question; and scientific findings from the research feed back into the models and improve their predictability. Her work has focused on applications to the Great Lakes, the Alaska’s coasts, Arctic Ocean, and the Sea of Okhotsk.

View MIDAS Faculty Research Pitch, Fall 2021

Areal fraction of ice cover in the Great Lakes in January 2018 modeled by the unstructured grid ice-hydrodynamic numerical model.

Marie O’Neill

By |

My research interests include health effects of air pollution, temperature extremes and climate change (mortality, asthma, hospital admissions, birth outcomes and cardiovascular endpoints); environmental exposure assessment; and socio-economic influences on health.
Data science tools and methodologies include geographic information systems and spatio-temporal analysis, epidemiologic study design and data management.

Carina Gronlund

By |

As an environmental epidemiologist and in collaboration with government and community partners, I study how social, economic, health, and built environment characteristics and/or air quality affect vulnerability to extreme heat and extreme precipitation. This research will help cities understand how to adapt to heat, heat waves, higher pollen levels, and heavy rainfall in a changing climate.

Omar Jamil Ahmed

By |

The Ahmed lab studies behavioral neural circuits and attempts to repair them when they go awry in neurological disorders. Working with patients and with transgenic rodent models, we focus on how space, time and speed are encoded by the spatial navigation and memory circuits of the brain. We also focus on how these same circuits go wrong in Alzheimer’s disease, Parkinson’s disease and epilepsy. Our research involves the collection of massive volumes of neural data. Within these terabytes of data, we work to identify and understand irregular activity patterns at the sub-millisecond level. This requires us to leverage high performance computing environments, and to design custom algorithmic and analytical signal processing solutions. As part of our research, we also discover new ways for the brain to encode information (how neurons encode sequences of space and time, for example) – and the algorithms utilized by these natural neural networks can have important implications for the design of more effective artificial neural networks.

Andrew Gronewold

By |

Dr. Andrew Gronewold, P.E., is an Associate Professor with the School for Environment and Sustainability (SEAS) at the University of Michigan. He also holds adjunct faculty appointments in the University of Michigan’s Department of Civil and Environmental Engineering, and the Department of Earth and Environmental Sciences. Dr. Gronewold conducts research through a range of hydrological science projects that explore methods for quantifying and communicating uncertainties arising within long-term hydrological monitoring networks and data, and incorporating those uncertainties into models and risk-based water resources management decisions. Much of his recent research has focused on monitoring, analyzing, and forecasting the long-term water budget and water levels of the Laurentian Great Lakes.

Xianglei Huang

By |

Prof. Huang is specialized in satellite remote sensing, atmospheric radiation, and climate modeling. Optimization, pattern analysis, and dimensional reduction are extensively used in his research for explaining observed spectrally resolved infrared spectra, estimating geophysical parameters from such hyperspectral observations, and deducing human influence on the climate in the presence of natural variability of the climate system. His group has also developed a deep-learning model to make a data-driven solar forecast model for use in the renewable energy sector.