Anna G. Stefanopoulou

By |

Energy Transportation related topics: data and simulations of various cleaner and ultimately cost-effective options for transit. exploring techno-economic and environmental issues in electric ride-sharing/hailing vehicles to create clean and convenient alternatives to single-occupancy vehicles. investigation of the location and integration of chargers with energy storage and bi-directional services, along with the connection to distributed renewable power generation such as solar arrays as well as the centralized electric grid.

Powertrain related topics: measurements, models and management of batteries, fuel cells, and engines in automotive and stationary applications.

Aditi Misra

By |

Transportation is the backbone of the urban mobility system and is one of the greatest sources of environmental emissions and pollutions. Making urban transportation efficient, equitable and sustainable is the main focus of my research. My students and I analyze small scale survey data as well as large scale spatiotemporal data to identify travel behavior trends and patterns at a disaggregate level using econometric methods, which we then scale up to the population level through predictive and statistical modeling. We also design our own data collection methods and instruments, be it a network of smart devices or stated preference experiments. Our expertise lies in identifying latent constructs that influence decisions and choices, which in turn dictate demands on the systems and subsystems. We use our expertise to design incentives and policy suggestions that can help promote sustainable and equitable multimodal transportation systems. Our team also uses data analytics, particularly classification and pattern recognition algorithms, to analyze crash context data and develop safety-critical scenarios for automated and connected vehicle (CAV) deployment. We have developed an online game based on such scenarios to promote safe shared mobility among teenagers and young adults and plan to expand research in that area. We are also currently expanding our research to explore the use of NN in context information synthesis.

This is a project where we used classification and Bayesian models to identify scenarios that are risky for pedestrians and bicyclists. We then developed an online game based on those scenarios for middle schoolers so that they are better prepared for shared road conflicts.

Jing Sun

By |

My areas of interest are control, estimation, and optimization, with applications to energy systems in transportation, automotive, and marine domains. My group develops model-based and data-driven tools to explore underlying system dynamics and understand the operational environments. We develop computational frameworks and numerical algorithms to achieve real-time optimization and explore connectivity and data analytics to reduce uncertainties and improve performance through predictive control and planning.

Lei Chen

By |

Lei Chen’s group focus on applying data science tools to advanced manufacturing. Chen’s research expertise and interests are to integrate the physics-based computational and experimental methods and data-driven approaches, to exploit the fundamental phenomena emerged in advanced manufacturing and to establish the design protocol for optimizing the materials and process parameters of as-fabricated parts for quality control. Current research can be summarized by:
1 One of significant challenges in additive manufacturing (AM) is the presence of heterogeneous sources of uncertainty involved in the complex layer-wise processes under non-equilibrium conditions that lead to variability in the microstructure and properties of as-built components. Consequently, it is extremely challenging to repeat the manufacturing of a high-quality product in mass production, and current practice usually reverts to trial-and-error techniques that are very time-consuming and costly. This research aims to develop an uncertainty quantification framework by bringing together physical modeling, machine-learning (ML), and experiments.
2 Computational microstructure optimization of piezocomposites involves iterative searches to achieve the desired combination of properties demanded by a selected application. Traditional analytical-based optimization methods suffer from the searching efficiency and result optimality due to high dimensionality of microstructure space, complicated electrical and mechanical coupling and non-uniqueness of solutions. Moreover, AM process inherently poses several manufacturing constraints e.g., the minimum feature size and the porosity in the piezoelectric ceramics as well as at the ceramics-polymer interface. It is challenging to include such manufacturing constraints since they are not explicitly available. This research aims to develop a novel data-driven framework for microstructure optimization of AM piezoelectric composites by leveraging extensive physics-based simulation data as well as limited amount of measurement data from AM process.
3 Lithium (Li) and other alkali metals (e.g., sodium and potassium) are very attractive electrode candidates for the next-generation rechargeable batteries that promise several times higher energy density at lower cost. However, Li-dendrite formation severely limits the commercialization of Li-metal batteries, either because dendrite pieces lose electrical contact with the rest of the Li-electrode or because growing dendrites can penetrate the separator and lead to short circuits. This research aims to develop a computational model to accelerate the design of dendrite-free Li-metal batteries.

9.9.2020 MIDAS Faculty Research Pitch Video.

Blueprint for the research: data-driven modelling of additive manufacturing. Stereolithography-based and laser melting-based additive manufacturing processes are used to fabricate the powder-based piezoelectric ceramics and metals respectively, with controllable complex microstructures and/or architectures to tune material properties. Physics-based numerical simulations are performed in an “in-house” multiscale computational framework, which includes macroscopic finite-element based manufacturing process modelling, mesoscopic phase-field modelling of microstructure evolution and design, and first principles/CALPHAD calculation of thermodynamics and kinetics. Data-driven approaches include machine learning and uncertainty quantification with surrogate models, such as polynomial chaos expansion, Gaussian process, radial basis functions, etc.

Xiuli Chao

By |

Xiuli Chao’s research interests include queueing, scheduling, financial engineering, inventory control, and supply chain management. He is the co-developer of Lekin Scheduling System. He is the co-author of two books, Operations Scheduling with Applications in Manufacturing and Services (Irwin/McGraw-Hill, 1998), and Queueing Networks: Customers, Signals, and Product Form Solutions (John Wiley & Sons, 1999). Chao received the 1998 Erlang Prize from the Applied Probability Society of the Institute for Operations Research and Management Science (INFORMS), and received the 2005 David F. Baker Distinguished Research Award from the Institute of Industrial and Systems Engineers (IISE). He also received the Jon R. and Beverly S. Holt Award for Teaching Excellence  from the College of Engineering of the University of Michigan. Chao is a fellow of both IISE and INFORMS.

Xun Huan

By |

Prof. Huan’s research broadly revolves around uncertainty quantification, data-driven modeling, and numerical optimization. He focuses on methods to bridge together models and data: e.g., optimal experimental design, Bayesian statistical inference, uncertainty propagation in high-dimensional settings, and algorithms that are robust to model misspecification. He seeks to develop efficient numerical methods that integrate computationally-intensive models with big data, and combine uncertainty quantification with machine learning to enable robust and reliable prediction, design, and decision-making.

Optimal experimental design seeks to identify experiments that produce the most valuable data. For example, when designing a combustion experiment to learn chemical kinetic parameters, design condition A maximizes the expected information gain. When Bayesian inference is performed on data from this experiment, we indeed obtain “tighter” posteriors (with less uncertainty) compared to those obtained from suboptimal design conditions B and C.

Bryan R. Goldsmith

By |

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

 

Mark Allison

By |

Mark Allison, PhD, is Associate Professor of Computer Science in the department of Computer Science, Engineering and Physics at the University of Michigan-Flint.

Dr. Allison’s research pertains to the autonomic control of complex cyberphysical systems utilizing software models as first class artifacts. Domains being explored are microgrid energy management and unmanned aerial vehicles (UAVs) in swarms.

 

Brian Min

By |

Brian Min, PhD, is Associate Professor of Political Science in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor. Prof. Min holds secondary appointments as Research Associate Professor in the Center for Political Studies and the Institute for Social Research.

Prof. Min studies the political economy of development with an emphasis on distributive politics, public goods provision, and energy politics. His research uses high-resolution satellite imagery to study the distribution of electricity across and within the developing world. He has collaborated closely with the World Bank using satellite technologies and statistical algorithms to monitor electricity access in India and Africa, including the creation of a web platform to visualize twenty years of change in light output for every village in India (http://nightlights.io).

 

min-nightlights