Albert S. Berahas

By |

Albert S. Berahas is an Assistant Professor in the department of Industrial & Operations Engineering. His research broadly focuses on designing, developing and analyzing algorithms for solving large scale nonlinear optimization problems. Such problems are ubiquitous, and arise in a plethora of areas such as engineering design, economics, transportation, robotics, machine learning and statistics. Specifically, he is interested in and has explored several sub-fields of nonlinear optimization such as: (i) general nonlinear optimization algorithms, (ii) optimization algorithms for machine learning, (iii) constrained optimization, (iv) stochastic optimization, (v) derivative-free optimization, and (vi) distributed optimization.

9.9.2020 MIDAS Faculty Research Pitch Video.

S. Sandeep Pradhan

By |

My research interest include information theory, coding theory, distributed data processing, quantum information theory, quantum field theory.

Lei Ying

By |

His research is broadly in the interplay of complex stochastic systems and big-data, including large-scale communication/computing systems for big-data processing, private data marketplaces, and large-scale graph mining.

Ya’acov Ritov

By |

My main interest is theoretical statistics as implied to complex model from semiparametric to ultra high dimensional regression analysis. In particular the negative aspects of Bayesian and causal analysis as implemented in modern statistics.

An analysis of the position of SCOTUS judges.

Anna G. Stefanopoulou

By |

Energy Transportation related topics: data and simulations of various cleaner and ultimately cost-effective options for transit. exploring techno-economic and environmental issues in electric ride-sharing/hailing vehicles to create clean and convenient alternatives to single-occupancy vehicles. investigation of the location and integration of chargers with energy storage and bi-directional services, along with the connection to distributed renewable power generation such as solar arrays as well as the centralized electric grid.

Powertrain related topics: measurements, models and management of batteries, fuel cells, and engines in automotive and stationary applications.

Jing Sun

By |

My areas of interest are control, estimation, and optimization, with applications to energy systems in transportation, automotive, and marine domains. My group develops model-based and data-driven tools to explore underlying system dynamics and understand the operational environments. We develop computational frameworks and numerical algorithms to achieve real-time optimization and explore connectivity and data analytics to reduce uncertainties and improve performance through predictive control and planning.

Harm Derksen

By |

Current research includes a project funded by Toyota that uses Markov Models and Machine Learning to predict heart arrhythmia, an NSF-funded project to detect Acute Respiratory Distress Syndrome (ARDS) from x-ray images and projects using tensor analysis on health care data (funded by the Department of Defense and National Science Foundation).

Yi Lu Murphey

By |

Dr. Yi Lu Murphey is an Associate Dean for Graduate Education and Research, a Professor of the ECE(Electrical and Computer Engineering) department and the director of the Intelligent Systems Lab at the University of Michigan, Dearborn. She received a M.S. degree in computer science from Wayne State University, Detroit, Michigan, in 1983, and a Ph.D degree with a major in Computer Engineering and a minor in Control Engineering from the University of Michigan, Ann Arbor, Michigan, in 1989. Her current research interests are in the areas of machine learning, pattern recognition, computer vision and intelligent systems with applications to automated and connected vehicles, optimal vehicle power management, data analytics, and robotic vision systems. She has authored over 130 publications in refereed journals and conference proceedings. She is an editor for the Journal of Pattern Recognition, a senior life member of AAAI and a fellow of IEEE.

Lu Wei

By |

Lu Wei, DSc,  is Assistant Professor in the Department of Electrical and Computer Engineering at the University of Michigan, Dearborn.

Prof. Wei studies the analytical properties of interacting particle systems relevant to both classical and quantum information theory.


Vijay Subramanian

By |

Professor Subramanian is interested in a variety of stochastic modeling, decision and control theoretic, and applied probability questions concerned with networks. Examples include analysis of random graphs, analysis of processes like cascades on random graphs, network economics, analysis of e-commerce systems, mean-field games, network games, telecommunication networks, load-balancing in large server farms, and information assimilation, aggregation and flow in networks especially with strategic users.