Benjamin Goldstein

By |

Benjamin Goldstein is Assistant Professor of Environment and Sustainability and head of the Sustainable Urban-Rural Futures (SURF) lab. The SURF Lab (www.surf-lab.ca) studies and emphasizes urban sustainability at multiple scales. Through his work at the SURF Lab, Benjamin helps understand how urban processes and urban form drive the consumption of materials and energy in cities and produce environmental change inside and outside cities. He develops methods and tools to quantify the scale of these changes and the locations where they occur using life cycle assessment, input-output analysis, geospatial data, and approaches from data science. Benjamin is particularly interested in combining quantitative methods with theory rooted in social science to explore multiple dimensions of sustainability and address issues of distributive justice. His topical foci include urban food systems (esp. urban agriculture), agri-commodities, residual resource engineering, global supply chains, sustainable production and consumption, and energy systems.

Peter Reich

By |

Reich conducts global change research on plants, soils, ecosystems and people across a range of scales. His work links fundamental physiology with community dynamics and ecosystem structure and function, from the patch to the globe, within the context of the myriad of global environmental challenges that face us. This includes studying the effects on natural and human ecosystems of rising CO2 and associated climate change, biodiversity loss, and wildfire. This research involves a variety of tools and approaches (long-term experiments, observations, global data compilations, statistical and simulation models), a diverse set of ecosystems (boreal forest, temperate grassland, and more), and a range of scales (local, regional, global). The overarching goal is to understand what we humans are doing to nature in order to help orchestrate a shift towards a nature-forward prioritization that will in turn support and sustain human society.

I studied physics and creative writing and became interested in the fate of our environment; over time I began using tools from each focal area to advance ecological science in a changing world

Cyrus Omar

Cyrus Omar

By |

I lead the Future of Programming Lab (FP Lab), where we design modern user interfaces for modern programming languages. Much of how we program today is rooted in tools designed 40+ years ago, e.g. how we enter code (using simple text editing, which leads to profligate parse errors), how we validate code (using tests or impoverished type systems), how we explore code (in a slow, batched, textual manner), how we communicate change (by throwing away the edits we performed and forcing diff algorithms to guess what we did), and so on. My lab develops new programming language and editor mechanisms, starting from theoretical foundations in mathematics and building up to human interfaces.

Integrating live GUIs into programs with holes

Integrating live GUIs into programs with holes

Derek Van Berkel

Derek Van Berkel

By |

Dr. Van Berkel is an assistant professor at The University of Michigan, School for Environment and Sustainability. His research focuses on understanding land change at diverse scales; the physical and psychological benefit of exposure to natural environments; and how digital visualization of data can add new place-based knowledge in science and community decision-making. He has expertise in spatial statistics, data science, big data, and machine learning. Van Berkel is currently a Co-PI on an NSF grant examining how online webtools can enable the public to co-create landscape designs for novel solutions to climate-change adaptation and mitigation in urban areas. He is also part of the NOAA funded GLISA project developing land change models to support knowledge discovery in municipalities throughout the Great Lake States. His work in AI focuses on deciphering complex sentiment from multimodal content, such as understanding image content and analyzing captions and tags posted by users, at scale. This research aims to provide objective measures of behavior and attitude for modeling diverse values and benefits of nature globally.


Accomplishments and Awards

Cheng Li

By |

My research focuses on developing advanced numerical models and computational tools to enhance our understanding and prediction capabilities for both terrestrial and extraterrestrial climate systems. By leveraging the power of data science, I aim to unravel the complexities of atmospheric dynamics and climate processes on Earth, as well as on other planets such as Mars, Venus, and Jupiter.

My approach involves the integration of large-scale datasets, including satellite observations and ground-based measurements, with statistical methods and sophisticated machine learning algorithms including vision-based large models. This enables me to extract meaningful insights and improve the accuracy of climate models, which are crucial for weather forecasting, climate change projections, and planetary exploration.

Dani Jones

Dani Jones

By |

Dani Jones’ research program drives CIGLR’s portfolio of research in data science, machine learning, and artificial intelligence, as applied to physical limnology, weather forecasting, water cycle predictions, ecology, and observing system design. This research program aims is to advance societal adaptations to the effects of climate change, including flooding of coasts, rivers, and cities. Dani’s background is in physical oceanography, with specific expertise in adjoint modeling for comprehensive sensitivity analysis and unsupervised classification for data analysis, mostly applied to the North Atlantic and Southern Ocean. In Dani’s current role, they are establishing CIGLR’s new Artificial Intelligence Laboratory, leveraging the institute’s extensive observing assets, datasets, modeling capacity, interdisciplinary expertise, and numerous regional and international partnerships.

Mohammed Ombadi

Mohammed Ombadi

By |

My research focuses on understanding and quantifying climate change impacts on hydroclimatic extremes. From heavy storms and floods to extreme heatwaves and droughts, I study the changing characteristics of these events and their impacts on our daily lives. I use a wide range of data-driven methods such as causal inference, information theory, nonlinear dynamics and machine learning in the analysis of environmental systems. I am primarily interested in using causal inference to obtain new mechanistic insights on the impact of global warming on extreme weather events. My recent work has explored global warming impact on extreme events such as rainfall extremes, using a combination of observations and model simulations. Additionally, recent work has focused on developing new techniques to measure resilience of environmental systems to extreme events, with the ultimate goal of informing mitigation and adaptation strategies to climate change.Map of the Northern Hemisphere showing the projected increase in extreme daily rainfall by 2100 relative to 1950–1979 (the risk ratio). Darker areas are predicted to be more prone to increased rainfall extremes with global warming.

Map of the Northern Hemisphere showing the projected increase in extreme daily rainfall by 2100 relative to 1950–1979 (the risk ratio). Darker areas are predicted to be more prone to increased rainfall extremes with global warming.

What are some of your most interesting projects?

Resilience of Watersheds to Extreme Weather and Climate Events:

Hydrologic watersheds are the fundamental units of the land surface used in the analysis and management of water resources systems. The response of watersheds to extreme events is highly complex and determined by a multitude of factors, including the presence of dams and reservoirs, snowpack, groundwater-surface water interaction, and vegetation cover, among others. One significant knowledge gap in this field of research is how to objectively and unambiguously quantify the resilience and resistance of watersheds to extreme events, such as droughts and floods. Developing metrics to quantify resilience is of utmost importance, particularly in light of the changing characteristics of extreme events due to global warming.

In this project, I employ a wide range of statistical methods to quantify resilience. I then apply methods of machine learning, causal inference, and graph-based techniques to explore patterns of resilience across watersheds worldwide.

How did you end up where you are today?

I originally hail from Sudan, nestled at the heart of Africa. Growing up along the banks of the Nile River, I developed an early fascination with water and its profound connection to humanity. On one hand, it provides people with their needs for drinking, agriculture, transportation, and recreation. On the other hand, an excess or shortage of water often results in devastating natural disasters, such as floods, droughts, and famines. Throughout antiquity, humans have endeavored to regulate rivers by building dams, canals, and various other structures. This deep-seated interest in water sciences and related engineering disciplines led me to pursue a degree in Civil Engineering.

Following my college graduation, I chose to embark on graduate studies to delve deeper into the intricate relationship between climate change and the water cycle. Embarking on an arduous 18-hour flight, I traversed the vast Atlantic Ocean and the continental expanse of the United States to arrive in California, the Golden State. There, I successfully completed my MSc and PhD degrees at the University of California, Irvine, in just under five years. Subsequently, I relocated northward to Berkeley, where I conducted my postdoctoral research, focusing on the impact of global warming on climate extreme events. I come to University of Michigan with a deep research interest in exploring the impact of global warming on extreme events and the resilience of ecosystems to such events. My research group harness recent advances in data science (machine learning, causal inference and information theory) to obtain new mechanistic and predictive insights on these questions with the ultimate goal of informing climate change adaptation strategies.

Stella Yu

Stella Yu

By |

My research lies at the intersection of computer vision, human vision, and machine learning. Visual perception presents not just a fascinating computational problem, but more importantly an intelligent solution for large-scale data mining and pattern recognition applications.
My research has thus three themes.
1. Actionable Representation Learning Driven by Natural Data. I attribute our fast effortless vision to actionable representation learning driven by natural data, where mid-level visual pieces can be reassembled and adapted for seeing the new.
2. Efficient Structure-Aware Machine Learning Models. I view a computational model as dual to the data it takes in; since visual data are full of structures, models reflective of such structures can achieve maximum efficiency.
3. Application to Science, Medicine, and Engineering. I am interested in applying computer vision and machine learning to capture and exceed human expertise, enabling automatic data-driven discoveries in science, medicine, and engineering.


Accomplishments and Awards

Runzi Wang

Runzi Wang

By |

Runzi Wang is a transdisciplinary researcher who studies change in natural and urban environments across space and over time, with the objective of driving positive change with ecological planning and design strategies. Combining technologies such as big data, machine learning, remote sensing, and spatial statistics, her primary research explores how land cover change and urban development pattern influence stream water quality and stormwater quality at the watershed basis, together with various environmental, climatic, and sociocultural factors. By enhancing the interpretability of machine learning in its application to landscape architecture, the most innovative part of her research is to uncover the nonlinear, interacted relationships between environmental, technological, and sociocultural dimensions of landscape systems.

What are some of your most interesting projects?

  1. I conducted the first continental-scale urban stream water quality study funded by MIDAS. We applied geospatial analysis to investigate the characteristics of the built environment (e.g., building footprint, street length, land use spatial pattern) associated with urban stream water quality, the social inequities regarding exposure to stream water contamination, as well as the spatial variations in the above processes. We developed data integration protocols for data from remote sensing products, in-situ observations, and the US Census Bureau. Using Bayesian hierarchical models, we concluded that watersheds with a higher percentage of minorities are associated with higher nutrient pollution, with the relationship being more significant in the American Northwest.
  2. I investigated how land use planning and best management practices mitigated climate change effects on Lake Erie’s water quality. With the integration of longitudinal watershed land cover, agricultural, and climatic data from 1985-2017, we found that no-tillage and reduced tillage management were effective mitigation strategies that could decrease water quality sensitivity to climate change. We plan to advance this work by fusing remote sensing-based bloom detection and process-based simulation to investigate how climate change, land cover change, and anthropogenic activities will impact the eutrophication of Lake Erie.

How did you end up where you are today?

I have a highly interdisciplinary background, receiving training in architecture, landscape architecture, urban planning, statistics, hydrology and water quality, and broader social science topics. This forms my research topic to study the relationships between people, land, and water. Specifically, I study the interconnectedness between people living in the watershed, the land use and urban form of the watershed’s built form, the resulting water quality conditions, and the ecosystem services urban streams provide for people. This background also leverages many different methodologies in my work, including data science, hydrological models, social science methods, and so on. In addition, the most important thing about my research journey is that I have a few excellent friends/researchers who help me a lot on my way and make my research life inspiring and delightful most of the time.

 


Accomplishments and Awards

Liang Zhao

Liang Zhao

By |

I am working on analyzing the solar wind plasma measurements obtained by multiple space missions. Especially, I am interested in the solar wind heavy ion elemental abundance and charge states measured by SWICS on Ulysses and ACE and HIS onboard Solar Orbiter mission. Applications of machine learning and artificial intelligence algorithms on solar wind plasma classification and heliophysics parameter prediction are a brand new research area that we have been working on.


Accomplishments and Awards