Elizabeth Bondi-Kelly

Elizabeth Bondi-Kelly

By |

My research interests lie broadly in the area of artificial intelligence (AI) for social impact, particularly spanning the fields of multi-agent systems and data science for conservation and public health.

Sabine Loos

Sabine Loos

By |

My research focuses on natural hazards and disaster information, everything from understanding where disaster data comes from, how it’s used, and its implications to design improved disaster information systems that prioritize the human experience and lead to more effective and equitable outcomes.

My lab takes a user-centered and data-driven approach. We aim to understand user needs and the effect of data on users’ decisions through qualitative research, such as focus groups or workshops. We then design new information systems through geospatial/GIS analysis, risk analysis, and statistical modeling techniques. We often work with earth observation, sensor, and survey data. We consider various aspects of disaster information, whether it be the hazard, its physical impacts, its social impacts, or a combination of the three.

I also focus on the communication of information, through data visualization techniques, and host a Risk and Resilience DAT/Artathon to build data visualization capacity for early career professionals.

Geospatial model for predicting inequities in recovery from the 2015 Nepal earthquake

Brian Weeks

Brian Weeks

By |

In the Weeks lab, we work at the intersection of ecology and evolutionary biology to try to understand how large scale biodiversity patterns arose, and what they might tell us about how natural systems will respond to human activities. We have a particular focus on the impacts of climate change on birds, and are increasingly using computer vision tools to measure bird traits on large numbers of photographs of museum skeletal specimens. This new approach has enabled us to generate skeletal trait datasets at an unprecedented scale that have begun to reveal some fascinating patterns in bird morphology that we are using to understand biotic responses to global change.

Dan Rabosky

Dan Rabosky

By |

The Rabosky lab seeks to understand how and why life on Earth became so diverse. We focus primarily on large-scale patterns of species diversification (speciation and extinction) and on the tempo and mode of phenotypic evolution, to better understand what regulates the “amount” of biodiversity through Deep Time. To this end, we develop theoretical frameworks and computational tools for studying evolutionary dynamics using DNA-sequence-based evolutionary trees (phylogenies), the fossil record, as well as phenotypic data from present-day species (morphology, ecology). We develop and apply a range of methods involving supervised and unsupervised learning, including Markov chain Monte Carlo, hierarchical mixture models, hidden Markov models, latent feature models, and more. We are increasingly interested in complex morphological and ecological traits, which – due to a rapidly expanding data universe – represent a tremendous opportunity for the field to answer long-standing questions about how organisms evolve. At these same time, we are embracing the analytical challenges of these data, because fully realizing their potential requires the development of new analytical paradigms that go beyond the limitations of traditional parametric models for low-dimensional data.

Automatic feature identification from a large-scale evolutionary tree (phylogeny) using a compound model of the generating process (speciation, extinction) developed in the Rabosky lab. Colors correspond to distinct evolutionary rate regimes as estimated using Markov chain Monte Carlo. This method revealed widespread heterogeneity in the rate of species formation during 350 million years of ray-finned fish evolution. Warm colors = fast rates; cool colors = slow rates.

Automatic feature identification from a large-scale evolutionary tree (phylogeny) using a compound model of the generating process (speciation, extinction) developed in the Rabosky lab. Colors correspond to distinct evolutionary rate regimes as estimated using Markov chain Monte Carlo. This method revealed widespread heterogeneity in the rate of species formation during 350 million years of ray-finned fish evolution. Warm colors = fast rates; cool colors = slow rates.

Photograph of Alison Davis Rabosky

Alison Davis Rabosky

By |

Our research group studies how and why an organism’s traits (“phenotypes”) evolve in natural populations. Explaining the mechanisms that generate and regulate patterns of phenotypic diversity is a major goal of evolutionary biology: why do we see rapid shifts to strikingly new and distinct character states, and how stable are these evolutionary transitions across space and time? To answer these questions, we generate and analyze high-throughput “big data” on both genomes and phenotypes across the 18,000 species of reptiles and amphibians across the globe. Then, we use the statistical tools of phylogenetic comparative analysis, geometric morphometrics of 3D anatomy generated from CT scans, and genome annotation and comparative transcriptomics to understand the integrated trait correlations that create complex phenotypes. Currently, we are using machine learning and neural networks to study the color patterns of animals vouchered into biodiversity collections and test hypotheses about the ecological causes and evolutionary consequences of phenotypic innovation. We are especially passionate about the effective and accurate visualization of large-scale multidimensional datasets, and we prioritize training in both best practices and new innovations in quantitative data display.

Photograph of Nate Sanders

Nate Sanders

By |

My research interests are broad, but generally center on the causes and consequences of biodiversity loss at local, regional, and global scales with an explicit focus on global change drivers. Our work has been published in Science, Nature, Science Advances, Global Change Biology, PNAS, AREES, TREE, and Ecology Letters among other journals. We are especially interested in using AI and machine learning to explore broad-scale patterns of biodiversity and phenotypic variation, mostly in ants.

Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Ayumi Fujisaki-Manome

By |

Fujisaki-Manome’s research program aims to improve predictability of hazardous weather, ice, and lake/ocean events in cold regions in order to support preparedness and resilience in coastal communities, as well as improve the usability of their forecast products by working with stakeholders. The main question Fujisaki-Manome’s research aims to address is: what are the impacts of interactions between ice and oceans / ice and lakes on larger scale phenomena, such as climate, weather, storm surges, and sea/lake ice melting? Fujisaki-Manome primarily uses numerical geophysical modeling and machine learning to address the research question; and scientific findings from the research feed back into the models and improve their predictability. Her work has focused on applications to the Great Lakes, the Alaska’s coasts, Arctic Ocean, and the Sea of Okhotsk.

View MIDAS Faculty Research Pitch, Fall 2021

Areal fraction of ice cover in the Great Lakes in January 2018 modeled by the unstructured grid ice-hydrodynamic numerical model.

Kevin Bakker

By |

Kevin’s research is focused on to identifying and interpreting the mechanisms responsible for the complex dynamics we observe in ecological and epidemiological systems using data science and modeling approaches. He is primarily interested in emerging and endemic pathogens, such as SARS-CoV-2, influenza, vampire bat rabies, and a host of childhood infectious diseases such as chickenpox. He uses statistical and mechanistic models to fit, forecast, and occasionally back-cast expected disease dynamics under a host of conditions, such as vaccination or other control mechanisms.