Kentaro Toyama

By |

Kentaro Toyama is W. K. Kellogg Professor of Community Information at the University of Michigan School of Information and a fellow of the Dalai Lama Center for Ethics and Transformative Values at MIT. He is the author of “Geek Heresy: Rescuing Social Change from the Cult of Technology.” Toyama conducts interdisciplinary research to understand how the world’s low-income communities interact with digital technology and to invent new ways for technology to support their socio-economic development, including computer simulations of complex systems for policy-making. Previously, Toyama did research in artificial intelligence, computer vision, and human-computer interaction at Microsoft and taught mathematics at Ashesi University in Ghana.

Interacting with children at a Seva Mandir school in Rajasthan, India.

Neil Carter

By |

Carter’s research combines quantitative, theoretical, and field approaches to address challenging local to global wildlife conservation issues in the Anthropocene. His work includes projects on endangered species conservation in human-dominated areas of Nepal, post-war recovery of wildlife in Mozambique, human-wildlife coexistence in the American West, and the effects of artificial lights and human-made noise on wildlife habitat across the contiguous US. Research methods focus on: (1) spatializing both human and wildlife processes, (2) probabilistic methods to infer human-wildlife interactions (3) simulation models of coupled natural-human systems, and (4) forecasting and decision-support tools.

Yulin Pan

By |

My research is mainly concerned with theoretical and computational hydrodynamics, with applications in nonlinear ocean wave prediction and dynamics, wave-body interactions, and wave turbulence theory. I have incorporated the data science tools in my research, especially in the following two projects:

1. Quantification of statistics of extreme ship motions in irregular wave fields: In this project, we propose a new computational framework that directly resolves the statistics (and causal factors) of extreme ship responses in a nonlinear wave field. The development leverages a range of physics and learning based approaches, including nonlinear wave simulations (potential flow), ship response simulations (e.g., CFD), dimension-reduction techniques, sequential sampling, Gaussian process regression (Kriging) and multi-fidelity methods. The key features of the new approach include (i) description of the stochastic wave field by a low-dimensional probabilistic parameter space, and (ii) use of minimum number of CFD simulations to provide most information for converged statistics of extreme motions.

2. Real-time wave prediction with data assimilation from radar measurements: In this project, we develop the real-time data assimilation algorithm adapted to the CPU-GPU hardware architecture, to reduce the uncertainties associated with radar measurement errors and environmental factors such as wind and current in the realistic ocean environment. Upon integration with advanced in-situ or remote wave sensing technology, the developed computational framework can provide heretofore unavailable real-time forecast capability for ocean waves.

Aaron A. King

By |

The long temporal and large spatial scales of ecological systems make controlled experimentation difficult and the amassing of informative data challenging and expensive. The resulting sparsity and noise are major impediments to scientific progress in ecology, which therefore depends on efficient use of data. In this context, it has in recent years been recognized that the onetime playthings of theoretical ecologists, mathematical models of ecological processes, are no longer exclusively the stuff of thought experiments, but have great utility in the context of causal inference. Specifically, because they embody scientific questions about ecological processes in sharpest form—making precise, quantitative, testable predictions—the rigorous confrontation of process-based models with data accelerates the development of ecological understanding. This is the central premise of my research program and the common thread of the work that goes on in my laboratory.

Jinseok Kim

By |

Jinseok Kim, Ph.D., is Research Assistant Professor in the Institute for Social Research at the University of Michigan, Ann Arbor.  Prof. Kim works on resolving named entity ambiguity in large-scale scholarly data (publication, patent, and funding records) in digital libraries. Especially, his current research is focused on developing methods for disambiguating author and affiliation names at a digital library scale using various supervised machine learning approaches trained on automatically labeled data . Disambiguated data from multiple sources will be integrated to be analyzed for insights into research production, scientific collaboration, funding evaluation, and research policy at a national level.

Lu Wei

By |

Lu Wei, DSc,  is Assistant Professor in the Department of Electrical and Computer Engineering at the University of Michigan, Dearborn.

Prof. Wei studies the analytical properties of interacting particle systems relevant to both classical and quantum information theory.


Necmiye Ozay

By |

Necmiye Ozay, PhD, is Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Ozay and her team develop the scientific foundations and associated algorithmic tools for compactly representing and analyzing heterogeneous data streams from sensor/information-rich networked dynamical systems. They take a unified dynamics-based and data-driven approach for the design of passive and active monitors for anomaly detection in such systems. Dynamical models naturally capture temporal (i.e., causal) relations within data streams. Moreover, one can use hybrid and networked dynamical models to capture, respectively, logical relations and interactions between different data sources. They study structural properties of networks and dynamics to understand fundamental limitations of anomaly detection from data. By recasting information extraction problem as a networked hybrid system identification problem, they bring to bear tools from computer science, system and control theory and convex optimization to efficiently and rigorously analyze and organize information. The applications include diagnostics, anomaly and change detection in critical infrastructure such as building management systems, transportation and energy networks.

Yi-Su Chen

By |

My current data science research interest lies in the broad area of supply chain and its management.   I am particularly interested in using longitudinal data set to identify early signals (or warning) and to draw causal inferences pertaining to supply chain security and product quality and safety.   I am also interested in developing experiments to capture the behavioral side of decision makings to be complementary to secondary data analysis.   Industry setting wise, I have based my research on the auto industry, and will expand my auto-industry centered research into a broader, transportation industry oriented context.   I am also interested in food and agricultural products, pharmaceutical, and medical devices industries where product quality and safety have significant implications to human life and society as a whole.

Ming Xu

By |

My research focuses on developing and applying computational and data-enabled methodology in the broader area of sustainability. Main thrusts are as follows:

  1. Human mobility dynamics. I am interested in mining large-scale real-world travel trajectory data to understand human mobility dynamics. This involves the processing and analyzing travel trajectory data, characterizing individual mobility patterns, and evaluating environmental impacts of transportation systems/technologies (e.g., electric vehicles, ride-sharing) based on individual mobility dynamics.
  2. Global supply chains. Increasingly intensified international trade has created a connected global supply chain network. I am interested in understanding the structure of the global supply chain network and economic/environmental performance of nations.
  3. Networked infrastructure systems. Many infrastructure systems (e.g., power grid, water supply infrastructure) are networked systems. I am interested in understanding the basic structural features of these systems and how they relate to the system-level properties (e.g., stability, resilience, sustainability).

A network visualization (force-directed graph) of the 2012 US economy using the industry-by-industry Input-Output Table (15 sectors) provided by BEA contains 405 industries. Each node represents a sector. The size of the node represents the economic output of the sector. The size and darkness of links represent the value of exchanges of goods/services between sectors. An interactive version and other data visualizations are available at

Luis E. Ortiz

By |

Luis Ortiz, PhD, is Assistant Professor of Computer and Information Science, College of Engineering and Computer Science, The University of Michigan, Dearborn

The study of large complex systems of structured strategic interaction, such as economic, social, biological, financial, or large computer networks, provides substantial opportunities for fundamental computational and scientific contributions. Luis’ research focuses on problems emerging from the study of systems involving the interaction of a large number of “entities,” which is my way of abstractly and generally capturing individuals, institutions, corporations, biological organisms, or even the individual chemical components of which they are made (e.g., proteins and DNA). Current technology has facilitated the collection and public availability of vasts amounts of data, particularly capturing system behavior at fine levels of granularity. In Luis’ group, they study behavioral data of strategic nature at big data levels. One of their main objectives is to develop computational tools for data science, and in particular learning large-population models from such big sources of behavioral data that we can later use to study, analyze, predict and alter future system behavior at a variety of scales, and thus improve the overall efficiency of real-world complex systems (e.g., the smart grid, social and political networks, independent security and defense systems, and microfinance markets, to name a few).