Peter Song

Peter Song

By |

My research interests lie in two major fields: In the field of statistical methodology, my interests include data integration, distributed inference, federated learning and meta learning, high-dimensional statistics, mixed integer optimization, statistical machine learning, and spatiotemporal modeling. In the field of empirical study, my interests include bioinformatics, biological aging, epigenetics, environmental health sciences, nephrology, nutritional sciences, obesity, and statistical genetics.

Mariel Lavieri

Mariel Lavieri

By |

Dr. Lavieri’s group is focused on creating novel modeling frameworks that utilize the rich datasets available in healthcare to personalize screening, monitoring, and treatment decisions of chronic disease patients. Her group has also created models for health workforce and capacity planning.

Anthony Bloch

Anthony Bloch

By |

My research interests include : Hamiltonian and Lagrangian mechanics, gradient flows on manifolds, integrable systems stability, the motion of mechanical systems with constraints, the relationship between continuous and discrete flows, nonlinear and optimal control and the control of quantum systems. I also interested in data-guided control and in particular the dynamics and control
of networks and systems arising from large sets, particularly in biological applications.

Majdi Radaideh

Majdi Radaideh

By |

Prof. Majdi Radaideh leads the Artificial Intelligence and Multiphysics Simulations lab (AIMS), which focuses on the intersection between nuclear reactor design, nuclear multiphysics modeling and simulation, advanced computational methods, and machine learning algorithms to drive advanced reactor research and improve the sustainability of the current reactor fleet. AIMS extensively employs data science and machine learning methods for various goals including but not limited to:
1- Development of surrogate models for expensive nuclear reactor simulations in steady-state and time-dependent modes using convolutional and recurrent neural networks.
2- Large-scale combinatorial optimization to improve the performance of the nuclear fuel inside nuclear power plants using physics-informed reinforcement learning and neuroevolution algorithms.
3- Long-short term memory and ensemble methods for anomaly detection and fault prognosis to monitor the health of the nuclear power plant components.
4- Uncertainty quantification of data-driven models with Bayesian inference and Gaussian processes.
5- Natural language processing methods to process nuclear plant maintenance and burnup records.

AIMS lab aims on bridging the gap between nuclear reactor design, nuclear multiphysics modeling and simulation, advanced computational methods, and machine learning algorithms to drive advanced nuclear reactor research and improve the sustainability of the current reactor fleet to promote nuclear power as a carbon-free energy source in order to achieve net-zero carbon emission.

Krishna Garikipati

Krishna Garikipati

By |

My research is in computational science and scientific artificial intelligence, including machine learning and data-driven modelling. I have applied these approaches to physics discovery by model inference, scale bridging, partial differential equation solvers, representation of complexity and constructing reduced-order models of high-dimensional systems. My research is motivated by and applied to phenomena in bioengineering, biophysics, mathematical biology and materials physics. Of specific interest to me are patterning and morphogenesis in developmental biology, cellular biophysics, soft matter and mechano-chemical phase transformations in materials. More fundamentally, the foundations of my research lie in applied mathematics, numerical methods and scientific computing.

A schematic illustrating the range of ML methods comprising the mechanoChemML code framework for data-driven computational material physics.

Michael Craig

By |

Michael is an Assistant Professor of Energy Systems at the University of Michigan’s School for Environment and Sustainability and PI of the ASSET Lab. He researches how to equitably reduce global and local environmental impacts of energy systems while making those systems robust to future climate change. His research advances energy system models to address new challenges driven by decarbonization, climate adaptation, and equity objectives. He then applies these models to real-world systems to generate decision-relevant insights that account for engineering, economic, climatic, and policy features. His energy system models leverage optimization and simulation methods, depending on the problem at hand. Applying these models to climate mitigation or adaptation in real-world systems often runs into computational limits, which he overcomes through clustering, sampling, and other data reduction algorithms. His current interdisciplinary collaborations include climate scientists, hydrologists, economists, urban planners, epidemiologists, and diverse engineers.

Elizabeth F. S. Roberts

By |

“Neighborhood Environments as Socio-Techno-bio Systems: Water Quality, Public Trust, and Health in Mexico City (NESTSMX)” is an NSF-funded multi-year collaborative interdisciplinary project that brings together experts in environmental engineering, anthropology, and environmental health from the University of Michigan and the Instituto Nacional de Salud Pública. The PI is Elizabeth Roberts (anthropology), and the co-PIs are Brisa N. Sánchez (biostatistics), Martha M Téllez-Rojo (public health), Branko Kerkez (environmental engineering), and Krista Rule Wigginton (civil and environmental engineering). Our overarching goal for NESTSMX is to develop methods for understanding neighborhoods as “socio-techno-bio systems” and to understand how these systems relate to people’s trust in (or distrust of) their water. In the process, we will collectively contribute to our respective fields of study while we learn how to merge efforts from different disciplinary backgrounds.
NESTSMX works with families living in Mexico City, that participate in an ongoing longitudinal birth-cohort chemical-exposure study (ELEMENT (Early Life Exposures in Mexico to ENvironmental Toxicants, U-M School of Public Health). Our research involves ethnography and environmental engineering fieldwork which we will combine with biomarker data previously gathered by ELEMENT. Our focus will be on the infrastructures and social structures that move water in and out of neighborhoods, households, and bodies.

Testing Real-Time Domestic Water Sensors in Mexico City

Testing Real-Time Domestic Water Sensors in Mexico City

Elle O’Brien

By |

My research focuses on building infrastructure for public health and health science research organizations to take advantage of cloud computing, strong software engineering practices, and MLOps (machine learning operations). By equipping biomedical research groups with tools that facilitate automation, better documentation, and portable code, we can improve the reproducibility and rigor of science while scaling up the kind of data collection and analysis possible.

Research topics include:
1. Open source software and cloud infrastructure for research,
2. Software development practices and conventions that work for academic units, like labs or research centers, and
3. The organizational factors that encourage best practices in reproducibility, data management, and transparency

The practice of science is a tug of war between competing incentives: the drive to do a lot fast, and the need to generate reproducible work. As data grows in size, code increases in complexity and the number of collaborators and institutions involved goes up, it becomes harder to preserve all the “artifacts” needed to understand and recreate your own work. Technical AND cultural solutions will be needed to keep data-centric research rigorous, shareable, and transparent to the broader scientific community.

View MIDAS Faculty Research Pitch, Fall 2021

 

Ben Green

By |

Ben studies the social and political impacts of government algorithms. This work falls into several categories. First, evaluating how people make decisions in collaboration with algorithms. This work involves developing machine learning algorithms and studying how people use them in public sector prediction and decision settings. Second, studying the ethical and political implications of government algorithms. Much of this work draws on STS and legal theory to interrogate topics such as algorithmic fairness, smart cities, and criminal justice risk assessments. Third, developing algorithms for public sector applications. In addition to academic research, Ben spent a year developing data analytics tools as a data scientist for the City of Boston.

Mark Steven Cohen

By |

In his various roles, he has helped develop several educational programs in Innovation and Entrepreneurial Development (the only one of their kind in the world) for medical students, residents, and faculty as well as co-founding 4 start-up companies (including a consulting group, a pharmaceutical company, a device company, and a digital health startup) to improve the care of surgical patients and patients with cancer. He has given over 80 invited talks both nationally and internationally, written and published over 110 original scientific articles, 12 book chapters, as well as a textbook on “Success in Academic Surgery: Innovation and Entrepreneurship” published in 2019 by Springer-NATURE. His research is focused on drug development and nanoparticle drug delivery for cancer therapeutic development as well as evaluation of circulating tumor cells, tissue engineering for development of thyroid organoids, and evaluating the role of mixed reality technologies, AI and ML in surgical simulation, education and clinical care delivery as well as directing the Center for Surgical Innovation at Michigan. He has been externally funded for 13 consecutive years by donors and grants from Susan G. Komen Foundation, the American Cancer Society, and he currently has funding from three National Institute of Health R-01 grants through the National Cancer Institute. He has served on several grant study sections for the National Science Foundation, the National Institute of Health, the Department of Defense, and the Susan G. Komen Foundation. He also serves of several scientific journal editorial boards and has serves on committees and leadership roles in the Association for Academic Surgery, the Society of University Surgeons and the American Association of Endocrine Surgeons where he was the National Program Chair in 2013. For his innovation efforts, he was awarded a Distinguished Faculty Recognition Award by the University of Michigan in 2019. His clinical interests and national expertise are in the areas of Endocrine Surgery: specifically thyroid surgery for benign and malignant disease, minimally invasive thyroid and parathyroid surgery, and adrenal surgery, as well as advanced Melanoma Surgery including developing and running the hyperthermic isolated limb perfusion program for in transit metastatic melanoma (the only one in the state of Michigan) which is now one of the largest in the nation.