Michael Elliott

By |

Michael Elliott is Professor of Biostatistics at the University of Michigan School of Public Health and Research Scientist at the Institute for Social Research. Dr. Elliott’s statistical research interests focus around the broad topic of “missing data,” including the design and analysis of sample surveys, casual and counterfactual inference, and latent variable models. He has worked closely with collaborators in injury research, pediatrics, women’s health, and the social determinants of physical and mental health. Dr. Elliott serves as an Associate Editor for the Journal of the American Statistical Association. He is currently serving as a co-investigator on the MIDAS-affiliated Reinventing Urban Transportation and Mobility project, working to develop methods to improve the representativeness of naturalistic driving data.

Johann Gagnon-Bartsch

By |

Johann Gagnon-Bartsch, PhD, is Assistant Professor of Statistics in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor.

Prof. Gagnon-Bartsch’s research currently focuses on the analysis of high-throughput biological data as well as other types of high-dimensional data. More specifically, he is working with collaborators on developing methods that can be used when the data are corrupted by systematic measurement errors of unknown origin, or when the data suffer from the effects of unobserved confounders. For example, gene expression data suffer from both systematic measurement errors of unknown origin (due to uncontrolled variations in laboratory conditions) and the effects of unobserved confounders (such as whether a patient had just eaten before a tissue sample was taken). They are developing methodology that is able to correct for these systematic errors using “negative controls.” Negative controls are variables that (1) are known to have no true association with the biological signal of interest, and (2) are corrupted by the systematic errors, just like the variables that are of interest. The negative controls allow us to learn about the structure of the errors, so that we may then remove the errors from the other variables.

Microarray data from tissue samples taken from three different regions of the brain (anterior cingulate cortex, dorsolateral prefrontal cortex, and cerebellum) of ten individuals. The 30 tissue samples were separately analyzed in three different laboratories (UC Davis, UC Irvine, U of Michigan). The left plot shows the first two principal components of the data. The data cluster by laboratory, indicating that most of the variation in the data is systematic error that arises due to uncontrolled variation in laboratory conditions. The second plot shows the data after adjustment. The data now cluster by brain region (cortex vs. cerebellum). The data is from GEO (GSE2164).

Microarray data from tissue samples taken from three different regions of the brain (anterior cingulate cortex, dorsolateral prefrontal cortex, and cerebellum) of ten individuals. The 30 tissue samples were separately analyzed in three different laboratories (UC Davis, UC Irvine, U of Michigan). The left plot shows the first two principal components of the data. The data cluster by laboratory, indicating that most of the variation in the data is systematic error that arises due to uncontrolled variation in laboratory conditions. The second plot shows the data after adjustment. The data now cluster by brain region (cortex vs. cerebellum). The data is from GEO (GSE2164).

Daniel Almirall

By |

Daniel Almirall, Ph.D., is Assistant Professor in the Survey Research Center and Faculty Associate in the Population Studies Center in the Institute for Social Research at the University of Michigan.

Prof. Almirall’s current methodological research interests lie in the broad area of causal inference. He is particularly interested in methods for causal inference using longitudinal data sets in which treatments, covariates, and outcomes are all time-varying. He is also interested in developing statistical methods that can be used to form adaptive interventions, sometimes known as dynamic treatment regimes. An adaptive intervention is a sequence of individually tailored decisions rules that specify whether, how, and when to alter the intensity, type, or delivery of treatment at critical decision points in the medical care process. Adaptive interventions are particularly well-suited for the management of chronic diseases, but can be used in any clinical setting in which sequential medical decision making is essential for the welfare of the patient. They hold the promise of enhancing clinical practice by flexibly tailoring treatments to patients when they need it most, and in the most appropriate dose, thereby improving the efficacy and effectiveness of treatment.

Study Design Interests: In addition to developing new statistical methodologies, Prof. Almirall devotes a portion of his research to the design of sequential multiple assignment randomized trials (SMARTs). SMARTs are randomized trial designs that give rise to high-quality data that can be used to develop and optimize adaptive interventions.

Substantive Interests: As an investigator and methodologist in the Institute for Social Research, Prof. Almirall takes part in research in a wide variety of areas of social science and treatment (or interventions) research. He is particularly interested in the substantive areas of mental health (depression, anxiety) and substance abuse, especially as related to children and adolescents.

Hongwei Xu

By |

My substantive research interest is to understand the role of geography in shaping population health. Towards this end, my methodological and data science interests are twofold. First, I seek to develop and apply spatial statistical methods to model individual- and area-level health and diseases by using survey data and government statistics. Second, in light of the advance in GIS techniques and the increasingly accessible spatial data from various sources, I am exploring new approaches to integrate traditional geo-referenced survey data with non-traditional spatial data (e.g., remote sensing data, satellite data, Google search) to reduce measurement errors in demographic health research.

Pamela Davis-Kean

By |

Pamela Davis-Kean, PhD, is Professor of Psychology, College of Literature, Science, and the Arts, and Research Professor, Survey Research Center and Research Center for Group Dynamics, Institute for Social Research, at the University of Michigan, Ann Arbor.

Prof. Davis-Kean is the Director of the Population, Neurodevelopment, and Genetics program at the Institute for Social Research. This group examines the complex transactions of brain, biology, and behavior as children and families develop across time. She is interested in both micro (brain and biology) and macro (family and socioeconomic conditions) aspects of development to understand the full developmental story of individuals.  Her primary focus in this area is how stress relates to family socioeconomic status and how that translates to parenting beliefs and behaviors that influence the development of children.

Peter X. K. Song

By |

Dr. Song interested in the development and application of theories and methodologies from Data Science to solve scientific problems arising from medical and public health sciences, in particular from the fields of environmental health sciences and nutritional sciences. People from his lab are strongly interested in interdisciplinary research in the areas of statistics, operation research, and machine learning, with the core interest in the statistical foundation of big data analytics, and with target applications in processing and analyzing big data from various applied sciences, including asthma, environmental health sciences, nephrology, and nutritional sciences. His research projects have been funded by NIH, NSF and DARPA funding agencies. Visit Song Lab webpage for detail: http://www.umich.edu/~songlab/

Timothy D. Johnson

By |

Timothy D. Johnson, Ph.D., is Professor of Biostatistics in the School of Public Health at the University of Michigan, Ann Arbor.

Prof. Johnson’s research interests include bayesian methods and MCMC, statistical image analysis, spatial point processes, statistical modeling of biomedical data, and applications in neuroscience, cancer, radiology, radiation oncolocy, Psychology/Psychiatry and endocrinology.