Thomas Schmidt

By |

The current goal of our research is to learn enough about the physiology and ecology of microbes and microbial communities in the gut that we are able to engineer the gut microbiome to improve human health. The first target of our engineering is the production of butyrate – a common fermentation product of some gut microbes that is essential for human health. Butyrate is the preferred energy source for mitochondria in the epithelial cells lining the gut and it also regulates their gene expression.

One of the most effective ways to influence the composition and metabolism of the gut microbiota is through diet. In an interventional study, we have tracked responses in the composition and fermentative metabolism of the gut microtiota in >800 healthy individuals. Emerging patterns suggest several configurations of the microbiome that can result in increased production of butyrate acid. We have isolated the microbes that form an anaerobic food web to convert dietary fiber to butyrate and continue to make discoveries about their physiology and interactions. Based on these results, we have initiated a clinical trial in which we are hoping to prevent the development of Graft versus Host Disease following bone marrow transplants by managing butyrate production by the gut microbiota.

We are also beginning to track hundreds of other metabolites from the gut microbiome that may influence human health. We use metagenomes and metabolomes to identify patterns that link the microbiota with their metabolites and then test those models in human organoids and gnotobiotic mice colonized with synthetic communities of microbes. This blend of wet-lab research in basic microbiology, data science and in ecology is moving us closer to engineering the gut microbiome to improve human health.

Albert Shih

By |

My research is focused on the human biometric data (such as motion) to guide the design and manufacturing of assistive and proactive devices. Embedded and external sensors generate ample data which require scientific approaches to analyze and create knowledge. I have worked closely with the University of Michigan Orthotics and Prosthetics Center in the design and manufacturing of custom assistive devices using 3D-printing and cyber-based design. The goal is to create a cyber-physical system that can acquire the data from scanning, sensors, human motion, user feedback, clinician diagnosis into quantitative health metrics and guidelines to improve the quality of care for people with needs.

Maureen Sartor

By |

My lab has two main areas of focus: molecular characteristics of head and neck cancer, and the intersection of regulatory genomics and pathway analysis. With head and neck cancer, we study tumor subtypes and biomarkers of prognosis, treatment response, and recurrence. We perform integrative omics analyses, dimension reduction methods, and prediction techniques, with the ultimate goal of identifying patient subsets who would benefit from either an additional targeted treatment or de-escalated treatment to increase quality of life. For regulatory genomics and pathway analysis, we develop statistical tests taking into account important covariates and other variables for weighting observations.

Carlos Aguilar

By |

The Aguilar group is focused understanding transcriptional and epigenetic mechanisms of skeletal muscle stem cells in diverse contexts such as regeneration after injury and aging. We focus on this area because there are little to no therapies for skeletal muscle after injury or aging. We use various types of in-vivo and in-vitro models in combination with genomic assays and high-throughput sequencing to study these molecular mechanisms.

Xu Shi

By |

My methodological research focus on developing statistical methods for routinely collected healthcare databases such as electronic health records (EHR) and claims data. I aim to tackle the unique challenges that arise from the secondary use of real-world data for research purposes. Specifically, I develop novel causal inference methods and semiparametric efficiency theory that harness the full potential of EHR data to address comparative effectiveness and safety questions. I develop scalable and automated pipelines for curation and harmonization of EHR data across healthcare systems and coding systems.

Evan Keller

By |

Our laboratory focuses on (1) the biology of cancer metastasis, especially bone metastasis, including the role of the host microenvironment; and (2) mechanisms of chemoresistance. We explore for genes that regulate metastasis and the interaction between the host microenvironment and cancer cells. We are performing single cell multiomics and spatial analysis to enable us to identify rare cell populations and promote precision medicine. Our research methodology uses a combination of molecular, cellular, and animal studies. The majority of our work is highly translational to provide clinical relevance to our work. In terms of data science, we collaborate on applications of both established and novel methodologies to analyze high dimensional; deconvolution of high dimensional data into a cellular and tissue context; spatial mapping of multiomic data; and heterogenous data integration.

Joshua Welch

By |

Our research aims to address fundamental problems in both biomedical research and computer science by developing new tools tailored to rapidly emerging single-cell omic technologies. Broadly, we seek to understand what genes define the complement of cell types and cell states within healthy tissue, how cells differentiate to their final fates, and how dysregulation of genes within specific cell types contributes to human disease. As computational method developers, we seek to both employ and advance the methods of machine learning, particularly for unsupervised analysis of high-dimensional data. We have particular expertise in manifold learning, matrix factorization, and deep learning approaches.

Zhongming Liu

By |

My research is at the intersection of neuroscience and artificial intelligence. My group uses neuroscience or brain-inspired principles to design models and algorithms for computer vision and language processing. In turn, we uses neural network models to test hypotheses in neuroscience and explain or predict human perception and behaviors. My group also develops and uses machine learning algorithms to improve the acquisition and analysis of medical images, including functional magnetic resonance imaging of the brain and magnetic resonance imaging of the gut.

We use brain-inspired neural networks models to predict and decode brain activity in humans processing information from naturalistic audiovisual stimuli.

Joshua Stein

By |

As a board-certified ophthalmologist and glaucoma specialist, I have more than 15 years of clinical experience caring for patients with different types and complexities of glaucoma. In addition to my clinical experience, as a health services researcher, I have developed experience and expertise in several disciplines including performing analyses using large health care claims databases to study utilization and outcomes of patients with ocular diseases, racial and other disparities in eye care, associations between systemic conditions or medication use and ocular diseases. I have learned the nuances of various data sources and ways to maximize our use of these data sources to answer important and timely questions. Leveraging my background in HSR with new skills in bioinformatics and precision medicine, over the past 2-3 years I have been developing and growing the Sight Outcomes Research Collaborative (SOURCE) repository, a powerful tool that researchers can tap into to study patients with ocular diseases. My team and I have spent countless hours devising ways of extracting electronic health record data from Clarity, cleaning and de-identifying the data, and making it linkable to ocular diagnostic test data (OCT, HVF, biometry) and non-clinical data. Now that we have successfully developed such a resource here at Kellogg, I am now collaborating with colleagues at > 2 dozen academic ophthalmology departments across the country to assist them with extracting their data in the same format and sending it to Kellogg so that we can pool the data and make it accessible to researchers at all of the participating centers for research and quality improvement studies. I am also actively exploring ways to integrate data from SOURCE into deep learning and artificial intelligence algorithms, making use of SOURCE data for genotype-phenotype association studies and development of polygenic risk scores for common ocular diseases, capturing patient-reported outcome data for the majority of eye care recipients, enhancing visualization of the data on easy-to-access dashboards to aid in quality improvement initiatives, and making use of the data to enhance quality of care, safety, efficiency of care delivery, and to improve clinical operations. .

Nicholas Douville

By |

Dr. Douville is a critical care anesthesiologist with an investigative background in bioinformatics and perioperative outcomes research. He studies techniques for utilizing health care data, including genotype, to deliver personalized medicine in the perioperative period and intensive care unit. His research background has focused on ways technology can assist health care delivery to improve patient outcomes. This began designing microfluidic chips capable of recreating fluid mechanics of atelectatic alveoli and monitoring the resulting barrier breakdown real-time. His interest in bioinformatics was sparked when he observed how methodology designed for tissue engineering could be modified to the nano-scale to enable genomic analysis. Additionally, his engineering training provided the framework to apply data-driven modeling techniques, such as finite element analysis, to complex biological systems.