Michigan Institute for Data Science (MIDAS)

Data Science (CSCAR)

Data Science (Data Science (CSCAR)

Data Science (CSCAR)

Data Science (CSCAR)

Data Science (CSCAR)

MBDH Transportation Spoke Workshop June 22, 2017

Alfred O. Hero; Co-Director

Brian D. Athey; Co-Director

Transportation system in 180 CE

Transportation infrastructure at height of Roman empire

Data on transportation in antiquity

Van Tillburg used data to draw inferences on

• Roads, road-users, traffic congestion, traffic policy

Data came from large variety of sources

- Written legal and construction records (Domitian, Nero)
- Written travel logs (Theophanes)
- Frozen-in-time physical evidence (Pompei)
- Archeological evidence for flows of trade
- Remote sensing and hyperspectral imaging

Transportation system today

Transportation system in 2017

http://www.computerworld.com/article/3005436/

Big Data for modern transportation

Autonomous sensing systems

http://www.computerworld.com/article/3005436/

Cloud data services

Data/sensor integration
Telematics
Automated routing
Mobility-on-demand

Ad Hoc Vehicle and Road Networks

http://www.rtcmagazine.com/articles/view/103169

Clients and users

waiting-for-bus-clip-art-waiting-for-bus-clipart

Big Data impact on transportation

- Data for improved transportation accessibility
 - Access to federated and standardized databases and datastreams
- Data for improved transportation safety
 - Prediction and early warning of traffic/weather conditions
- Data for improved energy efficiency
 - Efficient routing, load balancing, and traffic flow control
- Data for improved public service
 - Optimization of essential and emergency services

MIDAS transportation research thrust

Mcity: A 32-Acre Outdoor Lab

Mobility-on-demand systems

Visual analytics and data fusion

Accident and safety data analytics

Transportation data ecosystems Smart cities and for connected vehicles infrastructures Connected vehicle **Transportation** cybersecurity **Domain Expertise** (MTC, UMTRI) **DS Methodology Privacy & Data Expertise MIDAS Handling Expertise** (EECS, ME, IOE, SI, (ISR, SPP, EECS) Math, Statistics...)

MIDAS funded research in transportation

Building a Transportation Data Ecosystem: creating a system for data on driver behavior, traffic, weather, accidents, vehicle messages, traffic signals and road characteristics, with a parallel and distributed computing platform.

Flannagan (PI), UMITRI; Elliott, ISR; Hampshire, UMTRI; Jagadish, CoE Jin, CoE; Murphey, UM-Dearborn; Nair, LS&A, CoE Rupp, UMTRI; Shedden, LS&A; Tang, CoE; Witkowski, ISR

Reinventing Public Urban Transportation and Mobility: using predictive models for travel demand, accessibility, driver behavior, and transportation networks to design an on-demand public transportation system for urban areas.

Van Hentenryck (PI), CoE; Budak, SI; Cohn, CoE; Cunningham, Med, SPH Dillahunt, SI; Hampshire, UMTRI; Lynch, CoE; Levine, Taubman Merlin, Taubman Coll.; Ortiz, UM-Dearborn; Sayer, UMTRI; Wellman, COE

