

"Learning engineering":
The Art of Using Learning Science at Scale to Lift Performance

October 2015

## We know a lot about how expertise works

| Working Memory and Long-Term Memory |  |  |
|-------------------------------------|--|--|
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |
|                                     |  |  |



#### We also know more about motivation. . .

# Motivation Beliefs Value Self-Efficacy Attribution Mood Learning/Results Practice results Test results Fluency/ease Work results



#### This allows for a "learning engineering" approach





### Have to be careful – what we think is "good" may not be

Comparison of course teacher view vs. independent teachers' markings



Based on 10 randomly selected papers from a writing course



# The evidence also shows our intuitions aren't the best guides LSAT Logical Reasoning example



<sup>\*</sup> Significant difference from "No Instruction"



#### Faculty supports do help students – but need to check

Impact of faculty dashboards on first year college social studies course



<sup>\*</sup> Improved learning outcomes



#### There is much evidence about how to improve learning

| Principle       | Description                                                                                                | Effect size (s.d. units) |
|-----------------|------------------------------------------------------------------------------------------------------------|--------------------------|
| Multimedia      | Use relevant graphics and text to communicate content                                                      | 1.5                      |
| Contiguity      | Integrate the text nearby the graphics on the screen – avoid covering or separating integrated information | 1.1                      |
| Coherence       | Avoid irrelevant graphics, stories, videos, media, and lengthy text                                        | 1.3                      |
| Modality        | Include audio narration where possible to explain graphic presentation                                     | 1.0                      |
| Redundancy      | Do not present words as both on-screen text and narration when graphics are present                        | .7                       |
| Personalization | Script audio in a conversational style using first and second person                                       | 1.3                      |
| Segmenting      | Break content down into small topic chunks that can be accessed at the learner's preferred rate            | 1.0                      |
| Pre-training    | Teach important concepts and facts prior to procedures or processes                                        | 1.3                      |
| Etc.            | Worked examples, self-explanation questions, varied-context examples and comparisons, etc.                 | ??                       |



#### All this changes how courses should be developed

#### **Existing courses**



#### Read, Write, Discuss

- Outcomes and content not precisely aligned
- Limited demonstrations, worked examples, and practice
- General assessment rubrics
- High reliance on discussion boards

#### Redesigned courses



#### Prepare, Practice, Perform

- Outcomes and content aligned
- One lesson per objective
- Demonstrations and worked examples
- · Practice, feedback before assessment
- · Detailed scoring guides
- Less discussion/more practice
- Standard instructor materials
- Monitoring and support for motivation

#### Result: much greater student success



- 11% higher success rate
- 28% increase
- Students in redesigned courses were 1.6 times more likely to be successful

Wald Chi-Square: 10.42, df=1, n=895, Sig<.001.



#### Evidence matters if you're after good "learning engineering"





#### Where to find out more?

Location of course on using (and downloading) the checklist:

http://goo.gl/f1RCAu

• Bror's Blog for more on "learning engineering":

http://www.kaplan.com/brorsblog

• Contact me:

bror.saxberg@kaplan.com





April 20, 2015

Why We Need Learning Engineers
Chronicle of Higher Education



