Education & Training Program Presenters

Ivo D. DinovAssoc. Director
MIDAS
Ed & Training

Erin ShellmanResearch Scientist
AWS

Patrick Harrington
Co-Founder
Chief Data Scientist
CompGenome.com

Nandit Soparkar CEO, Ubiquiti

MIDAS Data Science Education & Training: Challenges & Opportunities

Ivo D. Dinov

Associate Professor, School of Nursing

Associate Education Director, Michigan Institute for Data Science (MIDAS)

University of Michigan http://MIDAS.umich.edu/education

National Big Data Science Curricula Constellation

Recently established Data Science institutes and curricular programs

MIDAS Big Data Ecosystem

http://socr.umich.edu/docs/BD2K/BigDataResourceome.html

MIDAJ FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

MIDAS Focus on Developing Big Data Skills

- o Listening: streams, analyzing sentiment, intent and trends;
- Looking: searching, indexing and memory management of heterogeneous datasets; Raw, derived or indexed data as well as meta-data;
- o **Programming**: Handling Map-Reduce/HDFS, No-SQL DB, protocol provenance, algorithm development/optimization, pipeline workflows;
- Inferring: Principles of data analyses, Bayesian modeling, inference, uncertainty and quantification of likelihoods; Reasoning & logic; Analytics: Regression, feature selection, dimensionality reduction, temporal patterns, validation; Actionable Knowledge
- o **Machine Learning**: Classification, clustering, mining, information extraction, knowledge retrieval, decision making;
- o **Predicting**: Forecasting, neural models, deep learning, and research topics;
- Summarizing: Presentation of data, processing protocol, analytics provenance, visualization, synthesis

Specific Data Science Training Challenges

- Technological advances and students' IT skills far outpace educators' technological expertise and the current rate of IT adoption in college curricula
- Lack of open learning resources and interactive interoperable platforms
- Difficulty sharing data, tools, materials
 & activities across different disciplines
- Limited technology-enhanced continuing instructor education opportunities
- Discipline-specific knowledge boundaries
- Skills for communication and teamwork involving cooperation in dynamic groups of dispersed researchers
- Ability to aggregate & harmonize data (e.g., fusion of qualitative and quantitative elements).

Core MIDAS Education Components

- Drivers: Motivations, datasets (6D of Big Data), challenges, applications
- Methods: foundational and trans-disciplinary scientific techniques
- Tools: web-services, software, code, platforms
- Analytics: practice of data interrogation

Existent Data Science Education & Training

- Undergraduate DS Degree Program
 - Stats + Engineering
 - Started Fall 2015
 - www.eecs.umich.edu/eecs/undergraduate/datascience
- DS Summer Institute (Public Health)
 - 20+ faculty, 40+ trainees
 - Full support/in residence (1 month)
 - BigDataSummerInst.sph.umich.edu
- Big Data Summer Bootcamp
 - 5 years running, Business-Engineering
 - Practice of Econ-Bio-Social Analytics
- o Graduate D5 Certificate Frogram
 - o camp Transdisciplinary (SM,SPH,LS&A,SN,CoE,SI)
 - 12 cr, Modeling+Technology +Practice
 - http://MIDAS.umich.edu/certificate

MIDAS Education & Training (Going Forward)

- Graduate Data Science Certificate Program
 - Enrollment of 100 (UMich) students
- Develop the Online Graduate Data Science Certificate Curriculum
- Develop a 5-yr dual undergrad-grad MS Program in Data Science
- DS Summer Institute (Public Health)
- Big Data Summer Bootcamp
- MIDAS Seminar Series (academia, industry, government, partners)
 - Web-streamed and archived for broader impact
- National Events
 - BD2K, Midwest Big-Data-Hub, Math, Stats, Computer Vision, Machine Learning, Informatics, ...
- Funding: NIH, NSF, Foundation: Research & Traineeship Applications

Michigan Difference in Data Science Education & Training

 Public-Private-Partnership (PPP) Model

Integration of Research + Practice +

Education

Problems + Modeling + Technology +

Geometric Mossore	Mathematical formulas
Value	III Salas at dedpola
Surface Area	FR - Come
Mean Consider	(0,10,1
Shape Index	arction (To To To)
Curvetness	No.
Rectal Dimension	10

Statistics Online Computational Resource (SOCR) Integration of Education, Research & Practice

Probability and Statistics EBook

 Motivation, Methods, Techniques, **Practice**

wiki.socr.umich.edu/index.php/EBook

Data sets

100's of Research, Observed & Simulate

 wiki.socr.umich.edu/index.php/ **SOCR Data**

Hands-on Activities (Team-focused

Modeling, Inference, Concept Dem

wiki.socr.umich.edu/index.php/SOCR EduMate

- Applets and Webapps
 - Over 500 Web tools
 - Distributed services based on Java, HTML5/res: Free, Cloud-service, no-barrier access, LGPL/ JavaScript

Ref: Dinov et al., TS (2013), DOI: 10.1111/test.12012 www.SOCR.umich.edu

MIDAS-SOCR Dashboard: Big Data Fusion Example

Big Data Analytics

http://socr.umich.edu/HTML5/Dashbo

- Web-service combining and integrating multi-source socioeconomic and medical datasets
- Big data analytic processing
- Interface for exploratory navigation, manipulation and visualization
- Adding/removing of visual queries and interactive exploration of multivariate associations
- O Powerful HTML5 technology GAN INSTITUTE

 Husain, et ala 2015 de mobile on de de de la SCIENCE

 En ability of Michiga

computing

MIDAS Online Data Science Education Program (DSEP)

MIDAS plans to:

- Develop new hands-on MOOC DS courses (data, learning modules, services, code snippets, applications/partners) ...
- o Deploy MIDAS **Training as a Service (TaaS)** MOOC platform
- Compile Datasets (research-derived, observational, simulated) identify, aggregate, manage, navigate, and service exemplary Big Data sets
- o **Faculty/Mentors**—instructors, collaborators, partners, students and staff to develop a core DS course-series (4 courses)
- o Instructional resources and complete end-to-end learning modules
- Track and Validate the DSEP Program annual reports (MIDAS ETC),
 review of evaluations, sustainability (financial, resources, space), impact

How to Engage & Partner in MIDAS Education?

Partners

- Open-SourceCommunity
- Academia
- Trainees
- Industry
- Non-profit
- Government
- Philanthropy
- Community

Orgs

Activities

Drivers

- Challenges
- Datasets
- Applications

Methods

Technologies

Tools/ Services

Training Opps

- Mentorship
- DS Projects
- Internships

FOR DATA SCIENCE

MIDAS Education & Training Team

MIDAS Education & Training Committee

Ivo Dinov, Margaret Hedstrom, Honglak Lee, Sebastian Zöllner, Richard Gonzalez, Kerby Shedden

Other Contributing MIDAS Faculty

Engineering

Alfred Hero: Electrical Engineering and Computer Science; Biomedical Engineering, Stats

H. V. Jagadish: Electrical Engineering and Computer Science

Mike Cafarella: Computer Science and Engineering

Karthik Duraisamy: Atmospheric, Oceanic, and Space Sciences

Judy Jin: Industrial & Operations Engineering

Dragomir Radev: School of Information; Computer Science and Engineering; Linguistics

Information & Health Sciences

Brian Athey: Computational Medicine and Bioinformatics, Medicine

Carl Lagoze: School of Information Qiaozhu Mei: School of Information

Jeremy Taylor, Biostatistics, Public Health

Basic Sciences

Vijay Nair: Statistics & Engineering

George Alter: Institute for Social Research, History

Christopher Miller: Physics & Astronomy August Evrard: Physics & Astronomy

Anna Gilbert: Mathematics, Engineering

Stephen Smith: Ecology and Evolutionary Biology

Ambuj Tewari: Statistics; Computer Science and Engineering

Contact

http://MIDAS.umich.edu

<u>midas-</u> <u>contact@umich.edu</u>

Dinov@umich.edu

Education & Training Program Presenters

Ivo D. DinovAssoc. Director MIDAS
Ed & Training

Erin Shellman Research Scientist, AWS

Nandit Soparkar CEO, Ubiquiti

Education & Training Program Presenters

Ivo D. DinovAssoc. Director
MIDAS
Ed & Training

Erin ShellmanResearch Scientist
AWS

Patrick Harrington
Co-Founder
Chief Data Scientist
CompGenome.com

Nandit Soparkar CEO, Ubiquiti

Big Data Science

From a descriptive to a constructive definition of Big Data

- IBM's 4V's volume, variety, velocity (speed) and veracity (reliability)
- MIDAS Big Data Characterization identifies gaps, challenges & needs

Example: analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements.

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers

Dinov, et al. (2014)

Kryder's law: Exponential Growth of Data

Data Science Training Program: Core Curriculum

Themes	Training	Examples
ing	Big Data Management	Big Data technology, Searching, indexing, memory management, Information extraction, feature selection, Supervised and unsupervised-learning, stream mining
Data Scrubbing	Big Data Representation	Matrix Representation of Sets, Minhashing, Jaccard Similarity, Distance Measures, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance, Networks, Graph similarity, Sets as Strings, Prefix Indexing, Data Streams and Processing, Representative Samples, Bloom Filter, Flajolet-Martin Algorithm, TF/IDF, MoM, MLE, Alon-Matias-Szegedy Algorithm for Second Moments, Datar-Gionis-Indyk-Motwani Algorithm (DGIM)
Data Mining	Mining Social- Network Graphs	Bio-Social Network Graphs, Root-Mean-Square Error, UV-Decomposition, The NetFlix Challenge, Tweeter Challenge, Distances and Clustering of Social-Network Graphs, Network Cluster Betweenness, Complete Bipartite Subgraphs, Graph Partition, Matrices and Graphs, Eigen-values/vectors of the Laplacian Matrix, Graph Neighborhood Properties, Diameter of a Graph, Transitive Closure and Reachability, Crowdsourcing Algorithms
	Modeling	Statistical Modeling, Machine Learning, Computational Modeling, Feature Extraction, Power Laws, Map-Reduce/Hadoop
	Link Analysis	PageRank, Spider Traps, Taxation and loops in Big Data traversal, Random Walks
Data Inference	Clustering	Curse of Dimensionality, Classification and Regression Trees/Random Forests, Hierarchical Clustering, K-means Algorithms, Bradley, Fayyad, and Reina (BFR) Algorithm, CURE Algorithm, Clusters in the GRGPF Algorithm
	Classification	Random Forest, SVM, Neural Networks, Latent Class Models, Finite Mixture Models
	Dimensionality Reduction	Eigenvalues and Eigenvectors, Principal-Component Analysis, Singular-Value Decomposition, Wrapper-Based vs Filter-Based Feature Selection, Independent Components Analysis, Multidimensional Scaling, CUR Decomposition
		0,

Big Data	Information	Knowledge	Action	
Raw Observations	Processed Data	Maps, Models	Actionable Decisions	
Data Aggregation	Data Fusion	Causal Inference	Treatment Regimens	
Data Scrubbing	Summary Stats	Networks, Analytics	Forecasts, Predictions	
Semantic-Mapping	Derived Biomarkers	Linkages, Associations	Healthcare Outcomes	
MIDAS MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN				