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Vision 
§ Generating presentations that connect 

§ Events 
§ Opinions 
§ Personal accounts  
§ Their impact on the world 
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Machine learning framework 

§ Data (often labeled) 
 

§ Extraction of “features” from text data 
 

§ Prediction of output 
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Machine learning framework 

§ Data (often labeled) 
 

§ Extraction of “features” from text data 
 

§ Prediction of output 
 
What features yield good predictions?  
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Predicting Future Scientific Impact 

§   
 
 
 
 
 
 
 

 
Climate change, Climate model 

§  Input: term, document 
 

§  Extract features from 
full text 
 

§  Predict prominence of  
term, document 

McKeown et al, JASIST forthcoming 
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Data 

§  4 million full-text Elsevier journal articles 
 

§  48 million Web of Science metadata 
records 
 

§  Fields: medical, chemistry, biology, 
computer science, … 
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Alexandrescu and 
Kirchhoff, 2007 

Lee and Ng, 2002 

Ando, 2006 
Niu et al., 2005 

Stevenson and Wilks, 2001 

Ng et al., 2003 

Rigau et al., 1997 

Yarowsky, 1995 

Stetina et al., 1998 

Ng and Lee, 1996 
Peh and Ng, 1997 

Yarowsky, 1992 

Khapra et al., 2011 
Chan et al., 2007 

Ti
m

e 

Qazvinian et al, JAIR 2013 

Metadata: 
Citation Network 

Features 
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Features drawn from article text 
§ Rhetorical function (Teufel, 1996) 

§  “Here, we present quantitative estimates of 
the global biological impacts of climate 
changes.” [AIM]  
 

§ Citation sentiment and scope 
§  “The approach of economists takes a 

broader view. … We argue that this 
approach misses biologically important 
phenomena.” 
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What have we learned?  
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Text features alone outperform metadata 
Elsevier data  

Text 
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Metadata adds value when combined with text 
Elsevier data 

Text 

Text+metadata 
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MONITOR EVENTS OVER TIME 
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Data 

§ NIST evaluation 
§ hourly web crawl 
§ October 2011 - February 2013 
§ 16.1TB 

§  Training Data drawn from Wikipedia 
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The U.S. Pacific Tsunami Warning Center 
said there was a possibility of a local 
tsunami, within 100 or 200 miles of the 
epicenter,  
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Would you like to contribute to this story? 
Start a discussion. 
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System Update 
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Features to Predict Salience 
Language Models (5-gram Kneser-Ney model) 

§  generic news corpus (10 years AP and NY Times articles) 
§  domain specific corpus (disaster related Wikipedia 

articles) 
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Features to Predict Salience 
Language Models (5-gram Kneser-Ney model) 

§  generic news corpus (10 years AP and NY Times articles) 
§  domain specific corpus (disaster related Wikipedia 

articles) 
High Salience 
Nicaragua's disaster management said it had issued a local 
tsunami alert. 
Medium Salience 
People streamed out of homes, schools and oce buildings as far 
north as Mexico City. 
Low Salience 
Add to Digg Add to del.icio.us Add to Facebook Add to Myspace 
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Features to Predict Salience 
Geographic Features 

§  tag input with Named-Entity tagger 
§  get coordinates for locations and  mean distance to event 
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What have We Learned? 

 
 
  

Salience features improve results 
 
We are not yet able to model redundancy well 
 

ROUGE-2 
Features F-measure 
All .049 
No Language Model .038 
No Geographical .042 
No Redundancy .056 

Kedzieet al, ACL 2015 
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SubEvent Identification 

Decompose articles on a main event into 
related sub-events: 

Manhattan Blackout Breezy Point fire Public Transit 
Outage 

Hurricane 
Sandy 
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Going Forward: Social Media 

§  Drawing what happened from social media 
§  It's dark.There is minor price gouging. There are 

restaurants selling hot food through their bay windows.  

§ How do people feel about impending 
storms? 
§  Excited, scared, nervous, blasé 

§  In collaboration with social scientists 
§  How does this impact preparedness? 
§  Correlate news reports with reactions across events 
§  What language in news engenders a reaction that helps 

people prepare?  
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We were sitting down to a late dinner 
 on Monday night when the storm was  
supposed to hit. It was incredibly windy  
but the rain really hadn’t been that bad. 
 
 … 
"By 10 p.m., the skies lit up in a purple and blue brilliance and 
the power started to go out here and there….That’s when I 
noticed neighbors across the street running out of their homes 
and fire trucks racing down the block. I saw a trickle of steady 
water coming down the street on both sides and then water 
began pouring in through the creaks in the basement door, so my 
husband went to grab the pump. He went upstairs to get a tool 
and in those few seconds, ocean waves broke the steel door lock 
and flooded the basement 6 feet high in minutes.”  
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Identify the Reportable Event 

§ Which sentence(s) convey the 
compelling event? 
 

§  The reportable event could serve as a 
summary for “what is this story about?” 
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Data 

§ AskReddit subreddit: e.g., ``What’s your 
creepiest real life story?’’ 
§ 3000 stories 

 
§ Small amount manually labeled (seed) 

§   Large amount automatically labeled 
using distant supervision 
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Linguistic Theory 

§ Prince: stories about change 
 

§ Polanyi: turning point marked by change 
in formality, style, emphasis 
 

§  Labov: a change in verb tense often 
accompanies the MRE 
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Mid-conversation, I felt his hands 
wrap around my throat as I was 
driving, pulling my head back and 
making it increasingly difficult to drive. 

Features: Change in Affect 
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What have we learned? 

§ Change features are most effective 
 

§ How to use the data? 
§ Experimented with seed only (small), distant 

supervision (large but noisy) and self-training  
 
                         Precision       Recall     F-measure 

Ouyang &McKeown, EMNLP 2015 
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Data Science Yields Solutions  

§   
 
 
 
 
 

Across disciplines 
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Thank You! 
§  The research presented here has been 

supported in part by DARPA BOLT, 
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