Machine Learning for Data Science

Robert Nowak
University of Wisconsin

Robot Rob

Robot Rob

What is Machine Learning?

Machine learning is an area of Computer Science focused on designing computer programs that enable machines to learn by example, much in the way young children are taught to understand the world around them.

What is Machine Learning?

Machine learning is an area of Computer Science focused on designing computer programs that enable machines to learn by example, much in the way young children are taught to understand the world around them.

Raw Data

What is Machine Learning?

Machine learning is an area of Computer Science focused on designing computer programs that enable machines to learn by example, much in the way young children are taught to understand the world around them.

Raw Data

Useful Information

$$
100^{3}
$$

measured
texture

measured

measured

measured
texture

Predict label y using a weighted combination of features $x_{1}=$ color and $x_{2}=$ roughness:

$$
\widehat{y}=\text { weight }_{1} \cdot x_{1}+\text { weight }_{2} \cdot x_{2}
$$

IMGENET

$20,000+$ concepts
$100+$ examples of each
$14,000,000+$ labeled images

ant
antelope
airplane

Challenge: Train a machine to recognize all these images

Big Data + Massive Computing = Deep Learning

GoogLeNet

Big Data + Massive Computing = Deep Learning

Many layers convolutional filtering + local max. Each convolutional block has its own weights tuned to maximize accuracy on the training set

Big Data + Massive Computing = Deep Learning

GoogLeNet

Many layers convolutional filtering + local max. Each convolutional block has its own weights tuned to maximize accuracy on the training set

Big Data + Massive Computing = Deep Learning

Many layers convolutional filtering + local max.
Each convolutional block has its own weights tuned to maximize accuracy on the training set

Why are neural nets working so well?

- more data
- faster computers

Learning with Thousands of Features

Predict label y using a linear combination of features $x_{1}, x_{2}, \ldots, x_{p}$:

$$
\widehat{y}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{p} x_{p}
$$

Learning with Thousands of Features

Predict label y using a linear combination of features $x_{1}, x_{2}, \ldots, x_{p}$:

$$
\widehat{y}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{p} x_{p}
$$

Learning with Thousands of Features

Predict label y using a linear combination of features $x_{1}, x_{2}, \ldots, x_{p}$:

$$
\widehat{y}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{p} x_{p}
$$

use n training examples to find best weights

$$
\begin{array}{rcc}
y_{1} & \approx w_{1} x_{11}+w_{2} x_{12}+\cdots+w_{p} x_{1 p} \\
y_{2} & \approx w_{1} x_{21}+w_{2} x_{22}+\cdots+w_{p} x_{2 p} \\
\vdots & \vdots \\
y_{n} & \approx & w_{1} x_{n 1}+w_{2} x_{n 2}+\cdots+w_{p} x_{n p}
\end{array}
$$

Learning with Thousands of Features

Predict label y using a linear combination of features $x_{1}, x_{2}, \ldots, x_{p}$:

$$
\widehat{y}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{p} x_{p}
$$

use n training examples to find best weights

$$
\begin{array}{rcc}
y_{1} & \approx w_{1} x_{11}+w_{2} x_{12}+\cdots+w_{p} x_{1 p} \\
y_{2} & \approx & w_{1} x_{21}+w_{2} x_{22}+\cdots+w_{p} x_{2 p} \\
\vdots & \vdots \\
y_{n} & \approx & w_{1} x_{n 1}+w_{2} x_{n 2}+\cdots+w_{p} x_{n p}
\end{array}
$$

In many applications

- $p \gg n \Rightarrow$ fewer equations than unknowns!

Learning with Thousands of Features

Predict label y using a linear combination of features $x_{1}, x_{2}, \ldots, x_{p}$:

$$
\widehat{y}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{p} x_{p}
$$

use n training examples to find best weights

$$
\begin{array}{rcc}
y_{1} & \approx w_{1} x_{11}+w_{2} x_{12}+\cdots+w_{p} x_{1 p} \\
y_{2} & \approx w_{1} x_{21}+w_{2} x_{22}+\cdots+w_{p} x_{2 p} \\
\vdots & \vdots \\
y_{n} & \approx & w_{1} x_{n 1}+w_{2} x_{n 2}+\cdots+w_{p} x_{n p}
\end{array}
$$

only a few genes important in disease

only a few active brain areas

Machines Reading Minds with fMRI

sentence: +1

Wang, Mitchell, Hutchinson '03

Machines Reading Minds with fMRI

image: -1

Wang, Mitchell, Hutchinson '03

Predicting Stimulus from fMRI Signals

Challenge: Train a machine to predict label (picture: -1 or sentence: +1)

Mapping Brain Activity via Optimization

$$
\widehat{\boldsymbol{w}}=\arg \min _{\boldsymbol{w}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} w_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|w_{j}\right|\right\}
$$

Mapping Brain Activity via Optimization

$$
\widehat{\boldsymbol{\boldsymbol { w }}}=\arg \min _{\boldsymbol{w}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} w_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|w_{j}\right|\right\}
$$

Mapping Brain Activity via Optimization

$$
\left.\begin{array}{l}
\qquad \widehat{\boldsymbol{w}}=\arg \min _{\boldsymbol{w}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} w_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|w_{j}\right|\right\} \\
\text { fit to data }
\end{array} \begin{array}{r}
\text { in a few } \\
\text { cortical } \\
\text { regions }
\end{array}\right\}
$$

Mapping Brain Activity via Optimization

$$
\begin{aligned}
& \qquad \widehat{\boldsymbol{w}}=\arg \min _{\boldsymbol{w}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} w_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|w_{j}\right|\right\} \\
& \text { fit to data }
\end{aligned} \begin{gathered}
\text { in a few } \\
\text { cortical } \\
\text { regions }
\end{gathered} ~ 子 \begin{aligned}
& \text { prediction accuracy } \mathbf{7 0 \% - 7 5 \%} \\
& \text { across multiple subjects }
\end{aligned}
$$

People + Machines

- how do humans reason about complicated concepts?
- what are people's preferences?
- how can people train machines with minimal human effort?

hipster bartender

hipster bartender

Bartender: "What beer would you like?"

hipster bartender

Bartender: "What beer would you like?"
AI: "Hmm... I prefer red wine"

hipster bartender

Bartender: "What beer would you like?"
AI: "Hmm... I prefer red wine"
Bartender: "Try these two samples. Do you prefer A or B?"

hipster bartender

Bartender: "What beer would you like?"
AI: "Hmm... I prefer red wine"
Bartender: "Try these two samples. Do you prefer A or B?"
AI: "B"

hipster bartender

Bartender: "What beer would you like?"
AI: "Hmm... I prefer red wine"
Bartender: "Try these two samples. Do you prefer A or B?"
AI: "B"
Bartender: "Ok try these two: C or D?"

Bartender: "What beer would you like?"
AI: "Hmm... I prefer red wine"
Bartender: "Try these two samples. Do you prefer A or B?"
AI: "B"
Bartender: "Ok try these two: C or D?"

Beer Maps

- can we train a machine to learn a beer map?
- can the machine use a map to recommend beers?

Map (cluster) beers based on word cloud similarities
 waino fline \cap hops floral 0 Odeatyivit "esprall citrus sweelo


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```

Ask Al to compare or rate strategically selected beers


```
Red \(=\) IPA
    Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians
    (light + dark)
Black \(=\) Stout + Porter
Blue = Everything else
```


BeerMapper

Discover better beer.

The most powerful beer app on the planet.

