
Machine Learning for Data Science

Robert Nowak
University of Wisconsin



Robot Rob



Robot Rob



What is Machine Learning?

Machine learning is an area of Computer Science 
focused on designing computer programs that enable 
machines to learn by example, much in the way young 
children are taught to understand the world around them. 
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Abstract—This paper investigates the problem of determining
a binary-valued function through a sequence of strategically
selected queries. The focus is an algorithm called Generalized
Binary Search (GBS). GBS is a well-known greedy algorithm
for determining a binary-valued function through a sequence of
strategically selected queries. At each step, a query is selected that
most evenly splits the hypotheses under consideration into two
disjoint subsets, a natural generalization of the idea underlying
classic binary search. This paper develops novel incoherence and
geometric conditions under which GBS achieves the informa-
tion-theoretically optimal query complexity; i.e., given a collection
of hypotheses, GBS terminates with the correct function after
no more than a constant times queries. Furthermore, a
noise-tolerant version of GBS is developed that also achieves the
optimal query complexity. These results are applied to learning
halfspaces, a problem arising routinely in image processing and
machine learning.

Index Terms—Binary search, channel coding with feedback,
learning theory, query learning, Shannon–Fano coding.

I. INTRODUCTION

T HIS paper studies learning problems of the following
form. Consider a finite, but potentially very large, collec-

tion of binary-valued functions defined on a domain . In
this paper, will be called the hypothesis space and will
be called the query space. Each is a mapping from
to . Throughout the paper we will let denote the
cardinality of . Assume that the functions in are unique and
that one function, , produces the correct binary labeling.
It is assumed that is fixed but unknown, and the goal is to
determine through as few queries from as possible. For
each query , the value , possibly corrupted with
independently distributed binary noise, is observed. The goal is
to strategically select queries in a sequential fashion in order to
identify as quickly as possible.

If the responses to queries are noiseless, then the problem is
related to the construction of a binary decision tree. A sequence
of queries defines a path from the root of the tree (corresponding
to ) to a leaf (corresponding to a single element of ). There
are several ways in which one might define the notion of an op-
timal tree; e.g., the tree with the minimum average or worst case
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Fig. 1. Generalized Binary Search, also known as the Splitting Algorithm.

depth. In general the determination of the optimal tree (in ei-
ther sense above) is a combinatorial problem and was shown by
Hyafil and Rivest to be NP-complete [19]. Therefore, this paper
investigates the performance of a greedy procedure called gen-
eralized binary search (GBS), depicted below in Fig. 1. At each
step GBS selects a query that results in the most even split of
the hypotheses under consideration into two subsets responding

and , respectively, to the query. The correct response to
the query eliminates one of these two subsets from further con-
sideration. We denote the number of hypotheses remaining at
step by . The main results of the paper characterize the
worst-case number of queries required by GBS in order to iden-
tify the correct hypothesis . More formally, we define the no-
tion of query complexity as follows.

Definition 1: The minimum number of queries required by
GBS (or another algorithm) to identify any hypothesis in is
called the query complexity of the algorithm. The query com-
plexity is said to be near-optimal if it is within a constant factor
of , since at least queries are required to specify one
of hypotheses.

Conditions are established under which GBS (and a noise-tol-
erant variant) have a near-optimal query complexity. The main
contributions of this paper are two-fold. First, incoherence
and geometric relations between the pair are studied
to bound the number of queries required by GBS. This leads
to an easily verifiable sufficient condition that guarantees that
GBS terminates with the correct hypothesis after no more than
a constant times queries. Second, noise-tolerant versions
of GBS are proposed. The following noise model is considered.
The binary response to a query is an
independent realization of the random variable satisfying

, where denotes the
underlying probability measure. In other words, the response
to is only probably correct. If a query is repeated more
than once, then each response is an independent realization of

. A new algorithm based on a weighted (soft-decision) GBS
procedure is shown to confidently identify after a constant
times queries even in the presence of noise (under the
sufficient condition mentioned above). An agnostic algorithm
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Predict label y using a weighted combination of features x1 = color and x2 = roughness:

by = weight1·x1 + weight2·x2



Big Data

accordion ant antelope airplane

20,000+ concepts
100+ examples of each
14,000,000+ labeled images

Challenge:  Train a machine to recognize all these images
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Big Data + Massive Computing = Deep Learning



�����

����
	
	�

�
��

�
�
����

�
��
�
��

�������������

����
�
��

�
��

����
�
��

�
��

�������������

�
�
����

�
��
�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

�
�
����

�
��
�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

"����#�����
!
!�

�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

"����#�����
!
!�

�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

�
�
����

�
��
�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

����
�
��

�
��

����
�
��

�
��
����

�
��
�
��

�
�
����

�
��
�
��

�
��� ������

����
�
��

�
��
����

!
!�
�
��

����
�
��

�
��

"����#�����
	
	�

�
��

$�

����
�
��

�
��

$� $�

��%��
�
"���������

��%��
�
&

����
�
��

�
��

$� $�

��%��
�
"���������

��%��
�
�

��%��
�
"���������

��%��
�
�

Figure
3:G

oogLeN
etnetw

ork
w

ith
allthe

bells
and

w
histles

7

GoogLeNet

Big Data + Massive Computing = Deep Learning

Many layers convolutional filtering + local max. 
Each convolutional block has its own weights
tuned to maximize accuracy on the training set
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Each convolutional block has its own weights
tuned to maximize accuracy on the training set
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GoogLeNet

Big Data + Massive Computing = Deep Learning

Many layers convolutional filtering + local max. 
Each convolutional block has its own weights
tuned to maximize accuracy on the training set

CNN accuracy on imagenet

Why are CNNs working again?

25 year-old technology!
more data!
faster computers

depth of network?!
biological plausibility?!
dropout?

Why are neural nets 
working so well?
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Predict label y using a linear combination of features x1, x2, . . . , xp:
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In many applications
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Learning with Thousands of Features

In many applications

• p � n ) fewer equations than unknowns!

only a few active 
brain areas

only a few genes
important in disease

• many of the weights w1, w2, . . . , wp should be zero

Predict label y using a linear combination of features x1, x2, . . . , xp:

by = w1x1 + w2x2 + . . . + wpxp

use n training examples to find best weights

y1 ⇡ w1x11 + w2x12 + · · ·+ wpx1p

y2 ⇡ w1x21 + w2x22 + · · ·+ wpx2p

.

.
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“It is true that the star 
is below the plus.”

Machines Reading Minds with fMRI
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⇡ w1 + w2 + · · · + wp

binary
labels

voxel 1
signal

voxel 2
signal

voxel p
signal

Predicting Stimulus from fMRI Signals

  Challenge:  Train a machine to predict label
                       (picture: -1 or sentence: +1)



Mapping Brain Activity via Optimization
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fit to data in a few 
cortical 
regions

Mapping Brain Activity via Optimization

prediction accuracy 70%-75%
across multiple subjects
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fit to data in a few 
cortical 
regions

Mapping Brain Activity via Optimization

(a) Lasso (b) Group Lasso

(c) SOS Lasso
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Figure 6: [Best seen in color]. Aggregated sparsity patterns across subjects per brain slice.
All the voxels selected across subjects in each slice are colored in red, blue or purple. Red
indicates voxels that exhibit a picture response in at least one subject and never exhibit
a sentence response. Blue indicates the opposite.Purple indicates voxel that exhibited a a
picture response in at least one subject and a sentence response in at least one more subject.
(d) shows the percentage of selected voxels that encode picture, sentence or both.
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Figure 6: [Best seen in color]. Aggregated sparsity patterns across subjects per brain slice.
All the voxels selected across subjects in each slice are colored in red, blue or purple. Red
indicates voxels that exhibit a picture response in at least one subject and never exhibit
a sentence response. Blue indicates the opposite.Purple indicates voxel that exhibited a a
picture response in at least one subject and a sentence response in at least one more subject.
(d) shows the percentage of selected voxels that encode picture, sentence or both.
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across multiple subjects
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People + Machines

• how do humans reason about complicated concepts?

• what are people’s preferences?

• how can people train machines with minimal human e↵ort?



hipster bartender



Bartender: “What beer would you like?”

hipster bartender



Al: “Hmm... I prefer red wine”

Bartender: “What beer would you like?”

hipster bartender



Bartender: “Try these two samples. Do you prefer A or B?”
Al: “Hmm... I prefer red wine”

Bartender: “What beer would you like?”

hipster bartender



Al: “B”

Bartender: “Try these two samples. Do you prefer A or B?”
Al: “Hmm... I prefer red wine”

Bartender: “What beer would you like?”

hipster bartender



Al: “B”

Bartender: “Ok try these two:  C or D?” ....

Bartender: “Try these two samples. Do you prefer A or B?”
Al: “Hmm... I prefer red wine”

Bartender: “What beer would you like?”

hipster bartender



Al: “B”

Bartender: “Ok try these two:  C or D?” ....

Bartender: “Try these two samples. Do you prefer A or B?”
Al: “Hmm... I prefer red wine”

Bartender: “What beer would you like?”

hipster bartenderrobot bartender   



• can we train a machine to learn a beer map?

• can the machine use a map to recommend beers?

Beer Maps



http://www.ratebeer.com/beer/two-hearted-ale/
Two Hearted Ale - Input ~2500 reviews

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/
http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/
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Red = IPA
Green = Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians 
               (light + dark)
Black = Stout + Porter
Blue = Everything else

Map (cluster) beers based 
on word cloud similarities



Red = IPA
Green = Pale Ale
Magenta = Amber Ale
Cyan = Lager + Pilsener
Yellow = Belgians 
               (light + dark)
Black = Stout + Porter
Blue = Everything else

Ask Al to compare or rate 
strategically selected beers

Jamieson and Nowak ’11
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Cheers!


