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What is Machine Learning?

Machine learning is an area of Computer Science
focused on designing computer programs that enable

machines to learn by example, much in the way young
children are taught to understand the world around them.



What is Machine Learning?

Machine learning is an area of Computer Science
focused on designing computer programs that enable

machines to learn by example, much in the way young
children are taught to understand the world around them.

Raw Data



What is Machine Learning?

Machine learning is an area of Computer Science
focused on designing computer programs that enable

machines to learn by example, much in the way young
children are taught to understand the world around them.

Raw Data Useful Information






< >
anaranjado amarillo rojo




wrinkly
A

\ 4
smooth

< >
anaranjado amarillo rojo




wrinkly
A

\ 4
smooth

< >
anaranjado amarillo rojo




wrinkly
A

\ 4
smooth

< >
orange yellow red




wrinkly
A

\ 4
smooth

< >
orange yellow red




wrinkly
A

i -1
L . !
® ®
_1 1
®
-1
- ®
1 +J .|.1
o
+1
+1 ’ +1 +
® °
\
smooth
< >
orange yellow red



measured

texture
A
: 1
-1 -1 -1 o
® ®
_1 +1
®
-1
- ®
1 +J .|.1
®
+1
+1 ’ +1 +
o o
Ov
< >
orange yellow red



measured

texture
A
1 1
-1 -1 -1 °
° °
-1
°
-1
-1 * +1
® ° .|.1
o
+1
o +1
+1 +1
o ® ¢
0V
< >
0 1

measured
color



measured

texture
A
1 1
-1 -1 -1 °
° °
-1
°
-1
-1 * +1
® ° .|.1
o
+1
o +1
+1 +1
o ® ¢
0V
< >
0 1

measured
color



measured
texture

1A

< > measured
0 1

color




measured
texture

1A

-1 1

Predict label y using a weighted combination of features x1 = color and x5 = roughness:

y = weight,-x1 4+ weight,- 2

+7
+1 ’ +1 +
o o
0}
< > measured
0 |

color




Big Data

20,000+ concepts

|00+ examples of each
14,000,000+ labeled images

accordion ant antelope airplane

Challenge: Train a machine to recognize all these images




Deep Learning

Big Data + Massive Computing
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Big Data + Massive Computing
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Learning with Thousands of Features

Predict label y using a linear combination of features =1, xo, ..., x,:

Y = wWiT1 + W2y + ... T WpTy

use n training examples to find best weights

Yr | WiT11 T W12 T T WpTlp
Yo R W1T2] T W2T22 T+ T WpT2p
only a few genes
important in disease
Yn =~ W1Tn1 + WoTp2 + -+ + WpLnp

In many applications

e p > n = fewer equations than unknowns!

only a few active

e many of the weights w+.w-.....w, should be zero .
y g 1, W2, » Wp brain areas



Machines Reading Minds with fMRI

sentence: +1

“It is true that the star
is below the plus.”

http://neurorelay.com

Wang, Mitchell, Hutchinson '03
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Predicting Stimulus from fMRI Signals

~ W1 -+ w9 + + wp
binary voxel 1 voxel 2 voxel p
labels signal signal signal

Challenge: Train a machine to predict label
(picture: -1 or sentence: +1)




Mapping Brain Activity via Optimization
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Rao, Cox, Rogers, and Nowak ’13
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Mapping Brain Activity via Optimization
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People + Machines

e how do humans reason about complicated concepts?
e what are people’s preferences?

e how can people train machines with minimal human effort?
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robot bartender

Bartender: “\What beer would you like?”

Al: “Hmm... | prefer red wine”

Bartender: “Try these two samples. Do you prefer A or B?”
Al: “‘B”

Bartender: “Ok try these two: C or D?" ....



Beer Maps

e can we train a machine to learn a beer map?

e can the machine use a map to recommend beers?



Two Hearted Ale - Input ~2500 reviews
http://www.ratebeer.com/beer/two-hearted-ale/
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Map (cluster) beers based
on word cloud similarities

Cyan =

Yellow =
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