

The Future of Data Science: A Convergence of Academia, Industry, and Government Speakers

October 6, 2015

Michigan Institute for Data Science (MIDAS) Overview

Al Hero and Brian Athey

MIDAS Co-directors

midas.umich.edu

Why Data Science? Why now?

- Information Explosion: Big Data methods of knowledge discovery are transforming all academic disciplines
- Educational Transformation: Digital data and information are transforming teaching, learning, and knowledge creation
- Societal Demands: New technical, social, and political solutions are required to address emerging privacy and security issues
- Industry and Social Sectors Desire: A new class of knowledge worker
 the data science trained domain specialist
- Cloud and Mobile Solutions: Data Science Services and infrastructures that are modern, adaptable, and cost-effective

Data Comes in Many Forms at U of M

UM Health System: 15 years and >4.91M unique patient records

Electronic Health Records (UMHS)

Trans. Res. Institute
>1 petabyte cts data
from >9000 vehicles

Electronic Sensor Data (UMTRI)

Institute for Social Res > 7000 digital social science data sets

MSDR Business Cycle - University of Michigan Consumer Ex-

Economic/Financial Data (UMISR)

Lab of Stephen A. Smith | http://blackrim.org

S. Smith –
Ecol&EvolBio
>2-3 million species
over 3.5 Billion years

Open Tree of Life (UMLSA)

http://socialmedia.umich.edu/

School of Information > 1 petabyte cts
Twitter feed data

Social Media Feeds (UMSI) CVPR A2D Actor Action Dataset

Annotated Images/Videos (UMENG)

Amount of Global Data is Growing Exponentially

Materials Science

Cambridge Structural Database

Social media users Registered OA Repositories

http://www.dstevenshite.com

160,000 Engineering materials Multiscale multiphysics

Materials Genome Initiative (UM-ENG)

Twitter firehose generates 10,109 Tweets/sec

Twitter Rumor Tracking (UM-SI)

Amount of Health and Life Science Data is also **Growing Exponentially**

Gene sequencing

National Library of Medicine

NCBI GEO Flat Data Repository

of Samples: 1345828 **NCI Integrated Dataset**

The Cancer Genome Atlas (TCGA)

Nature Genetics 45.

1113-1120 (2013)

Abecasis, Nature 2015

Human genetic diversity (UM-SPH)

OBO Foundry Data Servers 155 ontologies, 1,768,134 terms, 100K users

> **Ontologic Data integration** Yongun He, Medical School

Dimensions of Data – the 4 V's of "Big Data"

Volume

Data at Scale

Terabytes to petabytes of data

Variety

Data in Many Forms

Structured, unstructured, text multimedia

Velocity

Data in Motion

Analysis of streaming data To enable decisions within Fractions of a second.

Veracity

Data Uncertainty

Managing the reliability and Predictability of inherently Imprecise data types.

http://www.slideshare.net/ ibmsverige/building– confidence–in–big–data

Cost of efficiently processing the growing Volume

Collectively analyzing the broadening Variety

Responding to the increasing Velocity

10,109 tweets/ sec

50,659 searches/ sec

107,000 videos/ sec

Establishing/managing data source Uncertainty

iPhone GPS error: 8m

e-survey resp. rate: 25%

% not trusting data: 33%

Open Source Software is Diverse and Growing

https://www.oreilly.com/ideas/2015-data-science-salary-survey

Software packages are improving year-to-year

- Faster computation and better memory management
- Better package curation and interoperability
- More data diagnostics and data cleaning features
- More reliable data analysis and data visualization

Data Science Lies at the Multidisciplinary Interface

Some Questions Addressed by Data Science

Data collection

- What is ultimate value of a data source to end-user?
- How best to fuse data from diverse sources?
- Data management
 - How best to efficiently store, annotate and protect the data?
 - How best to verify provenance/veracity of data?
- Data Analysis
 - How best to process and analyze complex data?
 - How best to summarize and visualize complex data?
- How to automate data-to-decision pipeline?

Data Science Paradigm

- **Principles** for turning complex data into insights and decisions
- Methods for data collection, mining, management, and analysis

Relevant information

Pascal Van Hentenryk, Dept IOE Univ of Michigan

Insights

Decisions

Data-to-Knowledge Pipeline (1996)

http://www.aaai.org/aitopics/assets/PDF/AIMag17-03-2-article.pdf

Data sources are centralized

All data Is stored locally

Data is homogeneous and small

Data is structured

Algorithms are primitive by

Processing not designed for as simple list today's standard Decision making

Data-to-Decision pipeline (2015 and Beyond)

Data Science Methodologies

Mathematics

Applied topology Convex optimization Num. linear algebra Applied probability Random matrix theory

Computer Science

Natural language proc.
Graph theory
Algorithms
Database indexing
Machine learning

Statistics

Sampling theory
Handling missing
data
Experimental design
Multivariate analysis
Graphical models

Data Science Methodologies

Information Science

Engineering

Physics

Human Computer
Interaction (HCI)
Data sharing and reuse
Process and workflow
Data archiving
Visualization

Comm. & info. theory Operations research Sensors and control Real-time computing Cloud computing Network science Complex systems Statistical physics Physico-mimetic models for data

http://dspace.org/sites/dspace.org/

http://um3d.dc.umich.edu/visualization/

http://en.wikipedia.org/wiki/Control_theory

U-M is the Ideal Ecosystem for Data Science

- UM has some of the largest corpora of data and data analytics
 - Transportation and energy data (UMTRI, EI)
 - University student records
 - Electronic health records and patient testing data (UMHS)
 - Social media feeds (SI) and economic data (ISR, ICPSR, Ross)
 - Astronomy, earth sciences, materials, and phylogeny data (LSA, SNRE)
- Top ranked educational programs in data science disciplines
 - Electrical Engineering and Computer Science, Mathematics,
 Statistics...
- High level of engagement with business and industry
- Location in a region with a vibrant rapidly & diversifying economy

