Michigan Institute for Data Science (MIDAS) Overview

Al Hero and Brian Athey
MIDAS Co-directors

midas.umich.edu
Why Data Science? Why now?

- **Information Explosion**: Big Data methods of knowledge discovery are transforming all academic disciplines.

- **Educational Transformation**: Digital data and information are transforming teaching, learning, and knowledge creation.

- **Societal Demands**: New technical, social, and political solutions are required to address emerging privacy and security issues.

- **Industry and Social Sectors Desire**: A new class of knowledge worker – the data science trained domain specialist.

- **Cloud and Mobile Solutions**: Data Science Services and infrastructures that are modern, adaptable, and cost-effective.
Data Comes in Many Forms at U of M

UM Health System: 15 years and >4.91M unique patient records

Electronic Health Records (UMHS)

Trans. Res. Institute >1 petabyte cts data from >9000 vehicles

Electronic Sensor Data (UMTRI)

Institute for Social Res >7000 digital social science data sets

Economic/Financial Data (UMISR)

Lab of Stephen A. Smith | http://blackrim.org

S. Smith – Ecol&EvolBio >2–3 million species over 3.5 Billion years

Open Tree of Life (UMLSA)

School of Information >1 petabyte cts Twitter feed data

Social Media Feeds (UMSI)

CVPR A2D Actor Action Dataset

Jason Corso – EECS 4000 videos with a total 2.5M frames

Annotated Images/Videos (UMENG)
Amount of Global Data is Growing Exponentially

Materials Science

Cambridge Structural Database

Social media users

Registered OA Repositories

http://www.dstevenshite.com

160,000 Engineering materials
Multiscale multiphysics
Materials Genome Initiative (UM–ENG)

Qiaozhu Mei, SI

Twitter firehose generates 10,109 Tweets/sec

Twitter Rumor Tracking (UM–SI)

John Allison, Mat. Sci and Eng

1,000,000 books from US libraries
145,227 from US Lib Congress
205,046 from UM Library
Amount of Health and Life Science Data is also Growing Exponentially

Gene sequencing

National Library of Medicine

NCBI GEO Flat Data Repository

Abecasis, Nature 2015

Human genetic diversity (UM–SPH)

OBO Foundry Data Servers
155 ontologies, 1,768,134 terms, 100K users

Ontologic Data integration
Yonqun He, Medical School

The Cancer Genome Atlas (TCGA)
Nature Genetics 45, 1113–1120 (2013)
Dimensions of Data – the 4 V’s of “Big Data”

Volume
Data at Scale
Terabytes to petabytes of data

Collectively analyzing the broadening Variety
80% of the world’s data is unstructured

Velocity
Data in Motion
Analysis of streaming data
To enable decisions within fractions of a second.

Veracity
Data Uncertainty
Managing the reliability and predictability of inherently imprecise data types.

Cost of efficiently processing the growing Volume

10,109 tweets/sec
50,659 searches/sec
107,000 videos/sec

% not trusting data: 33%
iPhone GPS error: 8m
e-survey resp. rate: 25%
Open Source Software is Diverse and Growing

Software packages are improving year-to-year

- Faster computation and better memory management
- Better package curation and interoperability
- More data diagnostics and data cleaning features
- More reliable data analysis and data visualization

Data Science Lies at the Multidisciplinary Interface

- Computer Science
- Mathematics
- Information Science
- Statistics
- Engineering & Natural Sciences

Application domains
Some Questions Addressed by Data Science

- **Data collection**
 - What is ultimate value of a data source to end-user?
 - How best to fuse data from diverse sources?
- **Data management**
 - How best to efficiently store, annotate and protect the data?
 - How best to verify provenance/veracity of data?
- **Data Analysis**
 - How best to process and analyze complex data?
 - How best to summarize and visualize complex data?
- **How to automate data-to-decision pipeline?**
Data Science Paradigm

- **Principles** for turning complex data into insights and decisions
- **Methods** for data collection, mining, management, and analysis

Complex Data → Analysis → Relevant Information → Insights → Decisions

Pascal Van Hentenryk, Dept IOE Univ of Michigan
Data sources are centralized

All data is stored locally

Data is homogeneous and small

Data is structured as simple list

Algorithms are primitive by today’s standard

Processing not designed for Decision making
Data-to-Decision pipeline (2015 and Beyond)

DATA
- Sensors
- Local storage
- Cloud services

INSIGHTS & DECISIONS
- Human Collaboration

Processes
- Data Acquisition
- Information Extraction and Cleaning
- Integration Aggregation Representation
- Modeling & Analysis (Machine Learning)
- Interpretation

Attributes
- Heterogeneity (Variety)
- Scale (Volume)
- Timeliness (Velocity)
- Reliability (Veracity)
- Relevance (Value)
- Privacy and Data Ownership

Keywords
- Crowdsourcing
- Human-in-the-loop
- Expert knowledge
Data Science Methodologies

Mathematics
- Applied topology
- Convex optimization
- Num. linear algebra
- Applied probability
- Random matrix theory

Computer Science
- Natural language proc.
- Graph theory
- Algorithms
- Database indexing
- Machine learning

Statistics
- Sampling theory
- Handling missing data
- Experimental design
- Multivariate analysis
- Graphical models
Data Science Methodologies

Information Science

Human Computer Interaction (HCI)
Data sharing and reuse
Process and workflow
Data archiving
Visualization

Engineering

Comm. & info. theory
Operations research
Sensors and control
Real-time computing
Cloud computing

Physics

Network science
Complex systems
Statistical physics
Physico-mimetic models for data

http://en.wikipedia.org/wiki/Control_theory

Mark Newman, UM Physics
U-M is the Ideal Ecosystem for Data Science

- UM has some of the largest corpora of data and data analytics
 - Transportation and energy data (UMTRI, EI)
 - University student records
 - Electronic health records and patient testing data (UMHS)
 - Social media feeds (SI) and economic data (ISR, ICPSR, Ross)
 - Astronomy, earth sciences, materials, and phylogeny data (LSA, SNRE)
- Top ranked educational programs in data science disciplines
 - Electrical Engineering and Computer Science, Mathematics, Statistics…
- High level of engagement with business and industry
- Location in a region with a vibrant rapidly & diversifying economy