agrogan

Andrew Grogan-Kaylor

By | | No Comments

My core intellectual interest is the way in which parenting behaviors, like the use of physical punishment, or parental expressions of emotional warmth, have an effect on child outcomes like aggression, antisocial behavior, anxiety and depression, and how these dynamics play out across contexts, neighborhoods, and cultures.  A lot of my work is done with international samples. In my work I use statistical models, like multilevel models and some econometric models, and software like Stata, R, HLM and ArcGIS, to examine things like growth and change over time, or community, school or parent effects on children and families.

Visualization of multilevel modeling using High School and Beyond data set.

Visualization of multilevel modeling using High School and Beyond data set.

joryan

Joseph Ryan

By | | No Comments

Joe Ryan’s research and teaching build upon his direct practice experiences with child welfare and juvenile justice populations. Dr. Ryan is the Co-Director of the Child and Adolescent Data, an applied research center focused on using big data to drive policy and practice decisions in the field. Dr. Ryan is currently involved with several studies including a randomized clinical trial of recovery coaches for substance abusing parents in Illinois (AODA Demonstration), a foster care placement prevention study for young children in Michigan (MiFamily Demonstration), a Pay for Success (social impact bonds) study focused on high risk adolescents involved with the Illinois child welfare and juvenile justice system and a study of the educational experiences of youth in foster care (Kellogg Foundation Education and Equity). Dr. Ryan is committed to building strong University and State partnerships that utilize big data and data visualization tools to advance knowledge and address critical questions in the fields of child welfare and juvenile justice.

himlej

Joseph Himle

By | | No Comments

The goal of the research is to design, develop and test a inconspicuous, awareness-enhancement and monitoring device (AEMD) which will assist the treatment of trichotillomania (TTM), a disorder involving recurrent pulling of one’s hair resulting in noticeable hair loss. TTM is associated with significant impairments in social functioning and often has a profound negative impact on self-esteem and well being. Best practice treatment for TTM involves a form of behavioral therapy known as habit reversal therapy (HRT). HRT requires persons with trichotillomania to be aware of their hair pulling behaviors, yet the majority of persons with TTM pull most of their hair outside of their awareness . HRT also requires TTM sufferers to record the frequency and duration of their hair pulling behaviors yet it is obviously impossible for a person to monitor behaviors that they are unaware of. Our Phase I efforts have produced a prototype device (AEMD) that solves these two problems. The prototype AEMD signals the TTM sufferer if their hand approaches their hair, thereby bringing pulling-related behavior into awareness. The prototype AEMD also logs the time, date, duration, and user classification of hair pulling related events and can later transfer the logged data to a personal computer for analysis and data presentation. We continue to refine this device and seek to integrate it with smart-phones to better understand activities and locations associated with hair pulling or other body-focused repetitive behaviors (e.g., skin picking). In the future, we seek to pool data from users to get a better sense of common situations and other factors associated with elevated pulling rates. We intend to develop other electronic tools to detect, monitor and intervene with other mental disorders in the future.