goldsmith-2017

Bryan R. Goldsmith

By | | No Comments

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

 

suwencong_dept_photo_cropped

Wencong Su

By | | No Comments

In the next-generation power systems (Smart Grid), a large number of distributed energy devices (e.g., distributed generators, distributed energy storage, loads, smart meters) are connected to each other in an internet-like structure. Incorporating millions of new energy devices will require wide-ranging transformation of the nation’s aging electrical grid infrastructure. The key challenge is to efficiently manage a great amount of devices through distributed intelligence. The distributed grid intelligence (DGI) agent is the brain of distributed energy devices. DGI enables every single energy device to not only have a certain intelligence to achieve optimal management locally, but also coordinate with others to achieve a common goal. The massive volume of real-time data collected by DGI will help the grid operators gain a better understanding of a large-scale and highly dynamic power systems. In conventional power systems, the system operation is performed using purely centralized data storage and processing approaches. However, as the number of DGIs increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such big data explosion. The ongoing research work illustrates how advanced ideas from IT industry and power industry can be combined in a unique way. The proposed high-availability distributed file system and data processing framework can be easily tailored to support other data-intensive applications in a large-scale and complex power grids. For example, the proposed DGI nodes can be embedded into any distributed generators (e.g., roof-top PV panel), distributed energy storage devices (e.g., electric vehicle), and loads (e.g., smart home) in a future residential distribution system. If implemented successfully, we can translate Smart Grid with high-volume, high-velocity, and high-variety data to a completely distributed cyber-physical system architecture. In addition, the proposed work can be easily extended to support other cyber-physical system applications (e.g., intelligent transportation system).

Big Data Applications in Power Systems

Big Data Applications in Power Systems

Chen-BW

Yi-Su Chen

By | | No Comments

My current data science research interest lies in the broad area of supply chain and its management.   I am particularly interested in using longitudinal data set to identify early signals (or warning) and to draw causal inferences pertaining to supply chain security and product quality and safety.   I am also interested in developing experiments to capture the behavioral side of decision makings to be complementary to secondary data analysis.   Industry setting wise, I have based my research on the auto industry, and will expand my auto-industry centered research into a broader, transportation industry oriented context.   I am also interested in food and agricultural products, pharmaceutical, and medical devices industries where product quality and safety have significant implications to human life and society as a whole.

pascal-van-hentenryck-small

Pascal Van Hentenryck

By | | No Comments

Our research is concerned with evidence-based optimization, the idea of optimizing complex systems holistically, exploiting the unprecedented amount of available data. It is driven by an exciting convergence of ideas in big data, predictive analytics, and large-scale optimization (prescriptive analytics) that provide, for the first time, an opportunity to capture human dynamics, natural phenomena, and complex infrastructures in optimization models. We apply evidence-based optimization to challenging applications in environmental and social resilience, energy systems, marketing, social networks, and transportation. Key research topics include the integration of predictive (machine learning, simulation, stochastic approximation) and prescriptive analytics (optimization under uncertainty), as well as the integration of strategic, tactical, and operational models.

The video above is of a planned evacuation of 70,000 persons for a 1-100 year flood in the Hawkesbury-Nepean Region using both predictive and prescriptive analytics and large data sets for the terrain, the population, and the transportation network.