Kevin Dombkowski

By |

Kevin Dombkowski, DrPH, is Research Associate Professor in the department of Pediatrics, Medical School, and holds a secondary appointment in the School of Public Health at the University of Michigan, Ann Arbor.

Kevin’s primary research focus is conducting population-based interventions aimed at improving the health of children, especially those with chronic conditions. Much of his work has focused on evaluating the feasibility and accuracy of using administrative claims data to identify children with chronic conditions by linking these data with clinical and public health systems. Many of these projects have linked claims, immunization registries, newborn screening, birth records and death records to conduct population-based evaluations of health services. He has also applied these approaches to assess the statewide prevalence of chronic conditions such as asthma, sickle cell disease, and inflammatory bowel disease in Michigan as well as other states.

Further, his research interests also include registry-based interventions to improve the timeliness of vaccinations through automated reminder and recall systems. He has led numerous collaborations with the Michigan Department of Health and Human Services, including several CDC-funded initiatives using the Michigan Care Improvement Registry (MCIR). Through this collaboration, Kevin tested a statewide intervention aimed at increasing influenza vaccination among children with chronic conditions during the 2009 influenza pandemic.

Necmiye Ozay

By |

Necmiye Ozay, PhD, is Assistant Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

Prof. Ozay and her team develop the scientific foundations and associated algorithmic tools for compactly representing and analyzing heterogeneous data streams from sensor/information-rich networked dynamical systems. They take a unified dynamics-based and data-driven approach for the design of passive and active monitors for anomaly detection in such systems. Dynamical models naturally capture temporal (i.e., causal) relations within data streams. Moreover, one can use hybrid and networked dynamical models to capture, respectively, logical relations and interactions between different data sources. They study structural properties of networks and dynamics to understand fundamental limitations of anomaly detection from data. By recasting information extraction problem as a networked hybrid system identification problem, they bring to bear tools from computer science, system and control theory and convex optimization to efficiently and rigorously analyze and organize information. The applications include diagnostics, anomaly and change detection in critical infrastructure such as building management systems, transportation and energy networks.

Omid Dehzangi

By |

Omid Dehzangi, PhD, is Assistant Professor of Computer and Information Science, College of Engineering and Computer Science, at the University of Michigan, Dearborn.

Wearable health technology is drawing significant attention for good reasons. The pervasive nature of such systems providing ubiquitous access to the continuous personalized data will transform the way people interact with each other and their environment. The resulting information extracted from these systems will enable emerging applications in healthcare, wellness, emergency response, fitness monitoring, elderly care support, long-term preventive chronic care, assistive care, smart environments, sports, gaming, and entertainment which create many new research opportunities and transform researches from various disciplines into data science which is the methodological terminology for data collection, data management, data analysis, and data visualization. Despite the ground-breaking potentials, there are a number of interesting challenges in order to design and develop wearable medical embedded systems. Due to limited available resources in wearable processing architectures, power-efficiency is demanded to allow unobtrusive and long-term operation of the hardware. Also, the data-intensive nature of continuous health monitoring requires efficient signal processing and data analytic algorithms for real-time, scalable, reliable, accurate, and secure extraction of relevant information from an overwhelmingly large amount of data. Therefore, extensive research in their design, development, and assessment is necessary. Embedded Processing Platform Design The majority of my work concentrates on designing wearable embedded processing platforms in order to shift the conventional paradigms from hospital-centric healthcare with episodic and reactive focus on diseases to patient-centric and home-based healthcare as an alternative segment which demands outstanding specialized design in terms of hardware design, software development, signal processing and uncertainty reduction, data analysis, predictive modeling and information extraction. The objective is to reduce the costs and improve the effectiveness of healthcare by proactive early monitoring, diagnosis, and treatment of diseases (i.e. preventive) as shown in Figure 1.

Figure 1. Embedded processing platform in healthcare

Jie Shen

By |

Jie Shen, PhD, is Professor of Computer and Information Science at the University of Michigan, Dearborn.

Prof. Shen’s research interests are in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. His team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data

Pascal Van Hentenryck

By |

Pascal Van Hentenryck, Phd, is the Seth Bonder Collegiate Professor of Industrial and Operations Engineering, Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor.

His research is concerned with evidence-based optimization, the idea of optimizing complex systems holistically, exploiting the unprecedented amount of available data. It is driven by an exciting convergence of ideas in big data, predictive analytics, and large-scale optimization (prescriptive analytics) that provide, for the first time, an opportunity to capture human dynamics, natural phenomena, and complex infrastructures in optimization models. He applies evidence-based optimization to challenging applications in environmental and social resilience, energy systems, marketing, social networks, and transportation. Key research topics include the integration of predictive (machine learning, simulation, stochastic approximation) and prescriptive analytics (optimization under uncertainty), as well as the integration of strategic, tactical, and operational models.

The video above is of a planned evacuation of 70,000 persons for a 1-100 year flood in the Hawkesbury-Nepean Region using both predictive and prescriptive analytics and large data sets for the terrain, the population, and the transportation network.

Issam El Naqa

By |

Our lab’s research interests are in the areas of oncology bioinformatics, multimodality image analysis, and treatment outcome modeling. We operate at the interface of physics, biology, and engineering with the primary motivation to design and develop novel approaches to unravel cancer patients’ response to chemoradiotherapy treatment by integrating physical, biological, and imaging information into advanced mathematical models using combined top-bottom and bottom-top approaches that apply techniques of machine learning and complex systems analysis to first principles and evaluating their performance in clinical and preclinical data. These models could be then used to personalize cancer patients’ chemoradiotherapy treatment based on predicted benefit/risk and help understand the underlying biological response to disease. These research interests are divided into the following themes:

  • Bioinformatics: design and develop large-scale datamining methods and software tools to identify robust biomarkers (-omics) of chemoradiotherapy treatment outcomes from clinical and preclinical data.
  • Multimodality image-guided targeting and adaptive radiotherapy: design and develop hardware tools and software algorithms for multimodality image analysis and understanding, feature extraction for outcome prediction (radiomics), real-time treatment optimization and targeting.
  • Radiobiology: design and develop predictive models of tumor and normal tissue response to radiotherapy. Investigate the application of these methods to develop therapeutic interventions for protection of normal tissue toxicities.
Machine Learning in Radiation Oncology: Theory and Applications

Machine Learning in Radiation Oncology: Theory and Applications

Laura Balzano

By |

Laura Balzano, PhD, is Assistant Professor in the Electrical Engineering and Computer Science department at the University of Michigan, Ann Arbor.

Professor Balzano and her students investigate problems in statistical signal processing and optimization, particularly dealing with large and messy data. Her applications typically have missing, corrupted, and uncalibrated data as well as heterogeneous data in terms of sensors, sensor quality, and scale in both time and space. Her theoretical interests involve classes of non-convex problems that include Principal Components Analysis (or the Singular Value Decomposition) and many interesting variants such as PCA with sparse or structured principal components, orthogonality and non-negativity constraints, and even categorical data or human preference data. She concentrates on fast gradient methods and related optimization methods that are scalable to real-time operation and massive data. Her work provides algorithmic and statistical guarantees for these algorithms on the aforementioned non-convex problems, and she focuses carefully on assumptions that are realistic for the relevant applications. She has worked in the areas of online algorithms, real-time computer vision, compressed sensing and matrix completion, network inference, and sensor networks.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Real-time dynamic background tracking and foreground separation. At time t = 101, the virtual camera slightly pans to right 20 pixels. We show how GRASTA quickly adapts to the new subspace by t = 125. The first row is the original video frame; the middle row is the tracked background; the bottom row is the separated foreground.

Kevin Ward

By |

Kevin Ward, MD, is Professor of Emergency Medicine in the department of Emergency Medicine in the University of Michigan Medical School.

Dr. Ward is the director of the Michigan Center for Integrative Research in Critical Care (MCIRCC) and a new Medical School-wide innovation program, Fast Forward Medical Innovation. He has successfully developed monitors for measuring tissue oxygenation, volume status, redox potential, coagulation monitoring, image and physiologic signal analysis, and other physiologic parameters leading teams of engineers, basic scientists, and clinicians, bridging the translation gap.

Jerome P. Lynch

By |

Jerome P. Lynch, PhD, is Professor and Donald Malloure Department Chair of the Civil and Environmental Engineering Department in the College of Engineering in the University of Michigan, Ann Arbor.

Prof. Lynch’s group works at the forefront of deploying large-scale sensor networks to the built environment for monitoring and control of civil infrastructure systems including bridges, roads, rail networks, and pipelines; this research portfolio falls within the broader class of cyber-physical systems (CPS). To maximize the benefit of the massive data sets, they collect from operational infrastructure systems, and undertake research in the area of relational and NoSQL database systems, cloud-based analytics, and data visualization technologies. In addition, their algorithmic work is focused on the use of statistical signal processing, pattern classification, machine learning, and model inversion/updating techniques to automate the interrogation sensor data collected. The ultimate aim of Prof. Lynch’s work is to harness the full potential of data science to provide system users with real-time, actionable information obtained from the raw sensor data collected.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

A permanent wireless monitoring system was installed in 2011 on the New Carquinez Suspension Bridge (Vallejo, CA). The system continuously collects data pertaining to the bridge environment and the behavior of the bridge to load; our data science research is instrumental in unlocking the value of structural monitoring data through data-driven interrogation.

Kerby Shedden

By |

Kerby Shedden, PhD, is Professor of Statistics, College of Literature, Science, and the Arts, Professor of Biostatistics, School of Public Health, and Director of the Consulting for Statistics, Computing, and Analytics Research (CSCAR) center.

Kerby Shedden received his PhD in Statistics from UCLA in 1999 and joined the University of Michigan the same year.  His research interests include genomics, genetics, and other areas of life science where large and complex data arise. He also is interested in computational statistics and statistical software development. He participates in many collaborative research efforts including biomarker screening for cancer and kidney disease outcomes, cell-based screening for understanding the behavior of chemical probes in cells, and genetic association analysis for longitudinal traits.