Bryan R. Goldsmith

By | | No Comments

Bryan R. Goldsmith, PhD, is Assistant Professor in the department of Chemical Engineering within the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Goldsmith’s research group utilizes first-principles modeling (e.g., density-functional theory and wave function based methods), molecular simulation, and data analytics tools (e.g., compressed sensing, kernel ridge regression, and subgroup discovery) to extract insights of catalysts and materials for sustainable chemical and energy production and to help create a platform for their design. For example, the group has exploited subgroup discovery as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data.  They also have been using compressed sensing techniques to find physically meaningful models that predict the properties of perovskite (ABX3) compounds.

Prof. Goldsmith’s areas of research encompass energy research, materials science, nanotechnology, physics, and catalysis.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2).

 

Judy Jin

By | | No Comments

To develop new data fusion methodologies for improving system operation and quality with the emphasis on fusion of data and engineering knowledge collected from disparate sources by integrating multidisciplinary methods. Her research has been widely applied in both manufacturing and service industry by providing techniques for knowledge discovery and risk-informed decision making. Key research issues are being pursued:

  1. Advanced quality control methodologies for system monitoring, diagnosis and control with temporally and spatially dense operational/sensing data.
  2. Multi-scale data transform and high order tensor data analysis for modeling, analysis, classification, and making inferences of multistream sensing signals.
  3. Optimal sensor distribution and hierarchical variable selection methods for system abnormal detection and sensor fusion decisions, which integrates the causal probability network model, statistical change detection, set-covering algorithm, and hierarchical lasso regression.
  4. A unified approach for variation reduction in multistage manufacturing processes (MMPs) using a state space model, which blend the control theory with advanced statistics for MMPs sensing, monitoring, diagnosis and control, integrative design of process tolerance and maintenance policy considering the interaction between product quality and tool reliability.

Data science applications: (a) Smart manufacturing with sensor fusion, process monitoring, diagnosis and control (e.g., metal forming including stamping, forging, casting and rolling), assembly, ultrasonic welding, photovoltaic thin film deposition. (b) Travel time estimation and traffic prediction for intelligent transportation systems. (c) Multi-stream data analysis of human motion/vehicle crash testing data for improving vehicle design and safety. (d) Risk informed decision support for healthcare and clinical decisions. (e) Customer behavior modeling for fraud detection in healthcare and telecommunication. (f) Human decision-making behavior modeling in a dynamic/emergency environment.

jjin_image-1024x791