Jie Shen

By | | No Comments

My research interests areĀ in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. My team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data

Quentin Stout

By | | No Comments

I primarily work on developing scalable parallel algorithms to solve large scientific problems. This has been done with teams from several different disciplines and application areas. I’m most concerned with algorithms emphasizing in-memory approaches. Another area of research has developed serial algorithms for nonparametric regression. This is a flexible form of regression that only assumes a general shape, such as upward, rather than a parametric form such as linear. It can be applied to a range of learning and classification problems, such as taxonomy trees. I also work some in adaptive learning, designing efficient sampling procedures.