Joyce Chai

Joyce Chai

By |

My research interests are in the area of natural language processing, situated dialogue agents, and artificial intelligence. I’m particularly interested in language processing that is sensorimotor-grounded, pragmatically-rich, and cognitively-motivated. My current work explores the intersection of language, vision, and robotics to facilitate situated communication with embodied agents and applies different types of data (e.g., capturing human behaviors in communication, perception, and, action) to advance core intelligence of AI.

Vineet Kamat

Vineet Kamat

By |

My group conducts research in automation and robotics to improve work processes in the construction, operation, and maintenance of civil infrastructure and the built environment. Our research has developed several licensable technologies that include visualization, perception, and modeling techniques to help on-site construction robots with autonomous decision making. We are particularly interested in exploring new methods for enabling collaborative work strategies for human-robot teams jointly performing field construction work. In addition, we are also interested in exploring methods to integrate data to support semi-autonomous mobility for people with physical disabilities in the urban built environment.

Data-Driven Co-Robotic Field Construction Work

Ryan Stidham

Ryan Stidham

By |

Dr. Stidham is an academic gastroenterologist specializing in medical image analysis in Crohn’s disease, ulcerative colitis, inflammatory bowel diseases (IBD), and gastroenterology conditions at large. His research is focused on developing new measures of disease activity to power automated care models and clinical decision support systems in IBD with a focus on medical image analysis and new technology development. His work has focused on automation of existing IBD disease measures that relying on colonoscopy, CT, MRI, and ultrasound using neural networks and novel image analysis approaches. Dr. Stidham is also developing new measures of disease activity, inflammation, and fibrosis that leverage advances in image segmentation, transfer learning, signals analysis, and fuzzy network approaches as well as collaborating for development of new image acquisition modalities. Finally, his team has active projects in collaboration with the Department of Learning Health Sciences for merging data from clinical office notes with imaging data using computational linguistics approaches. His work has been supported by the NIH, DOD, NSF, and several large investigator-initiated industry collaborations.

Majdi Radaideh

Majdi Radaideh

By |

Prof. Majdi Radaideh leads the Artificial Intelligence and Multiphysics Simulations lab (AIMS), which focuses on the intersection between nuclear reactor design, nuclear multiphysics modeling and simulation, advanced computational methods, and machine learning algorithms to drive advanced reactor research and improve the sustainability of the current reactor fleet. AIMS extensively employs data science and machine learning methods for various goals including but not limited to:
1- Development of surrogate models for expensive nuclear reactor simulations in steady-state and time-dependent modes using convolutional and recurrent neural networks.
2- Large-scale combinatorial optimization to improve the performance of the nuclear fuel inside nuclear power plants using physics-informed reinforcement learning and neuroevolution algorithms.
3- Long-short term memory and ensemble methods for anomaly detection and fault prognosis to monitor the health of the nuclear power plant components.
4- Uncertainty quantification of data-driven models with Bayesian inference and Gaussian processes.
5- Natural language processing methods to process nuclear plant maintenance and burnup records.

AIMS lab aims on bridging the gap between nuclear reactor design, nuclear multiphysics modeling and simulation, advanced computational methods, and machine learning algorithms to drive advanced nuclear reactor research and improve the sustainability of the current reactor fleet to promote nuclear power as a carbon-free energy source in order to achieve net-zero carbon emission.

Tanya Rosenblat

Tanya Rosenblat

By |

My main research interest lies in experimental economics, social networks and social learning. I am particularly interested in how people aggregate information from social networks and news sources and form posterior beliefs. I use regression techniques to uncover causal relationships as well as classification to reduce the dimensionality of data.

Some of my recent research looks at how people update beliefs when they derive direct utility from beliefs. This occurs, for example, when people receive feedback on their ability. They often seem to weigh positive information more strongly than negative information. I am also interested in understanding differences between statistical and anecdotal reasoning. Under statistical reasoning, people have known objectives and they update beliefs through Bayes’ rule. Under anecdotal reasoning, people recall anecdotes that are relevant for forming a belief about a new objective that has not been encountered before. In these situations, memory recall and recognition are important to understand the formation of beliefs.

Mean absolute belief revisions by prior belief in response to positive/negative information. Prior deciles are ordered in increasing (decreasing) order for positive (negative) information. Bayesian should have equal responses.

Trishul Kapoor

By |

Our research is focused on Post ICU pain syndromes (PIPS). PIPS exhibit distinct phenotypic presentations and can be predicted by intra-ICU parameters. Our primary goal is to be able to predict post-ICU opioid use based on intra-ICU parameters. We utilize a data-driven characterization of post-ICU pain syndromes will utilize unsupervised clustering algorithms including DBSCAN and spectral clustering. Prediction of post-discharge pain severity, likelihood of specific pain presentations, and post-discharge opioid use will be achieved using logistic LASSO, random forests, and neural networks. Specifically, these tests will utilize available ICU data to predict changes between pre-
and post-ICU pain severity, incidence of specific pain presentations, and incidence of opioid use.

This is a representation of enhancement of human cognition and clinical intelligence with artificial intelligence.

This is a representation of enhancement of human cognition and clinical intelligence with artificial intelligence.

Lubomir Hadjiyski

Lubomir Hadjiyski

By |

Dr. Hadjiyski research interests include computer-aided diagnosis, artificial intelligence (AI), machine learning, predictive models, image processing and analysis, medical imaging, and control systems. His current research involves design of decision support systems for detection and diagnosis of cancer in different organs and quantitative analysis of integrated multimodality radiomics, histopathology and molecular biomarkers for treatment response monitoring using AI and machine learning techniques. He also studies the effect of the decision support systems on the physicians’ clinical performance.

J.J. Prescott

By |

Broadly, I study legal decision making, including decisions related to crime and employment. I typically use large social science data bases, but also collect my own data using technology or surveys.

Lu Wang

Lu Wang

By |

Lu’s research is focused on natural language processing, computational social science, and machine learning. More specifically, Lu works on algorithms for text summarization, language generation, argument mining, information extraction, and discourse analysis, as well as novel applications that apply such techniques to understand media bias and polarization and other interdisciplinary subjects.