Jun Li

By |

Jun Li, PhD, is Professor and Chair for Research in the department of Computational Medicine and Bioinformatics and Professor of Human Genetics in the Medical School at the University of Michigan, Ann Arbor.

 Prof. Li’s areas of interest include genetic and genomic analyses of complex phenotypes, including bipolar disorder, cancer, blood clotting disease, and traits involving animal models and human microbiomes. Our approach emphasizes statistical analysis of genome-scale datasets (e.g, gene expression and genotyping data, results from next-generation sequencing), evolutionary history, bioinformatics, and pattern recognition.

Brenda Gillespie

By |

Brenda Gillespie, PhD, is Associate Director in Consulting for Statistics, Computing and Analytics Research (CSCAR) with a secondary appointment as Associate Research Professor in the department of Biostatistics in the School of Public Health at the University of Michigan, Ann Arbor. She provides statistical collaboration and support for numerous research projects at the University of Michigan. She teaches Biostatistics courses as well as CSCAR short courses in survival analysis, regression analysis, sample size calculation, generalized linear models, meta-analysis, and statistical ethics. Her major areas of expertise are clinical trials and survival analysis.

Prof. Gillespie’s research interests are in the area of censored data and clinical trials. One research interest concerns the application of categorical regression models to the case of censored survival data. This technique is useful in modeling the hazard function (instead of treating it as a nuisance parameter, as in Cox proportional hazards regression), or in the situation where time-related interactions (i.e., non-proportional hazards) are present. An investigation comparing various categorical modeling strategies is currently in progress.

Another area of interest is the analysis of cross-over trials with censored data. Brenda has developed (with M. Feingold) a set of nonparametric methods for testing and estimation in this setting. Our methods out-perform previous methods in most cases.

Bhramar Mukherjee

By |

Bhramar Mukherjee is  a Professor in the Department of Biostatistics, joining the department in Fall, 2006. Bhramar is also a Professor in the Department of Epidemiology. Bhramar completed her Ph.D. in 2001 from Purdue University. Bhramar’s principal research interests lie in Bayesian methods in epidemiology and studies of gene-environment interaction. She is also interested in modeling missingness in exposure, categorical data models, Bayesian nonparametrics, and the general area of statistical inference under outcome/exposure dependent sampling schemes. Bhramar’s methodological research is funded by NSF and NIH.   Bhramar is involved as a co-investigator in several R01s led by faculty in Internal Medicine, Epidemiology and Environment Health sciences at UM. Her collaborative interests focus on genetic and environmental epidemiology, ranging from investigating the genetic architecture of colorectal cancer in relation to environmental exposures to studies of air pollution on pediatric Asthma events in Detroit. She is actively engaged in Global Health Research.

Kai S. Cortina

By |

Kai S. Cortina, PhD, is Professor of Psychology in the College of Literature, Science, and the Arts at the University of Michigan, Ann Arbor.

Prof. Cortina’s major research revolves around the understanding of children’s and adolescents’ pathways into adulthood and the role of the educational system in this process. The academic and psycho-social development is analyzed from a life-span perspective exclusively analyzing longitudinal data over longer periods of time (e.g., from middle school to young adulthood). The hierarchical structure of the school system (student/classroom/school/district/state/nations) requires the use of statistical tools that can handle these kind of nested data.


Ming Xu

By |

Ming Xu, PhD, is Associate Professor in the School of Environment and Sustainability with a secondary appointment as Associate Professor in the department of Civil and Environmental Engineering in the College of Engineering at the University of Michigan, Ann Arbor.

Prof. Xu’s research focuses on developing and applying computational and data-enabled methodology in the broader area of sustainability. Main thrusts are as follows:

1. Human mobility dynamics. I am interested in mining large-scale real-world travel trajectory data to understand human mobility dynamics. This involves the processing and analyzing travel trajectory data, characterizing individual mobility patterns, and evaluating environmental impacts of transportation systems/technologies (e.g., electric vehicles, ride-sharing) based on individual mobility dynamics.

2. Global supply chains. Increasingly intensified international trade has created a connected global supply chain network. I am interested in understanding the structure of the global supply chain network and economic/environmental performance of nations.

3. Networked infrastructure systems. Many infrastructure systems (e.g., power grid, water supply infrastructure) are networked systems. I am interested in understanding the basic structural features of these systems and how they relate to the system-level properties (e.g., stability, resilience, sustainability).


Jie Shen

By |

Jie Shen, PhD, is Professor of Computer and Information Science at the University of Michigan, Dearborn.

Prof. Shen’s research interests are in the digital diagnosis of material damage based on sensors, computational science and numerical analysis with large-scale 3D computed tomography data: (1) Establishment of a multi-resolution transformation rule of material defects. (2) Design of an accurate digital diagnosis method for material damage. (3) Reconstruction of defects in material domains from X-ray CT data . (4) Parallel computation of materials damage. His team also conducted a series of studies for improving the quality of large-scale laser scanning data in reverse engineering and industrial inspection: (1) Detection and removal of non-isolated Outlier Data Clusters (2) Accurate correction of surface data noise of polygonal meshes (3) Denoising of two-dimensional geometric discontinuities.

Processing and Analysis of 3D Large-Scale Engineering Data

Processing and Analysis of 3D Large-Scale Engineering Data

Michael Boehnke

By |

Michael Lee Boehnke, PhD, is the Richard G Cornell Distinguished University Professor of Biostatistics, School of Public Health, at the University of Michigan, Ann Arbor.

Prof. Boehnke’s research focuses on developing statistical methods for the analysis of human genetic data and application of those methods to understand the genetic basis of human health and disease. His methods and software are used by statisticians and geneticists worldwide. His disease research is focused on type 2 diabetes (T2D) and related traits and on bipolar disorder and schizophrenia. His studies that are generating and analyzing genome or exome sequence data on 10,000s of individuals requiring the efficient handling of petabyte-scale data.

Peter Lenk

By |

Peter Lenk, PhD, is Professor of Technology and Operations, Stephen M Ross School of Business, at the University of Michigan, Ann Arbor.

Prof. Lenk develops Bayesian models that disaggregate data to address individuals.  He also studies Bayesian nonparametric methods and currently consider shape constraints.  Prof. Lenk teaches and uses data mining methods such as recursive partition and neural networks.

Michael Elliot

By |

Michael Elliott, PhD, is a Professor of Biostatistics, School of Public Health, and Research Scientist at the Institute for Social Research at the University of Michigan, Ann Arbor.

Dr. Elliott’s statistical research interests focus around the broad topic of “missing data,” including the design and analysis of sample surveys, casual and counterfactual inference, and latent variable models. He has worked closely with collaborators in injury research, pediatrics, women’s health, and the social determinants of physical and mental health. Dr. Elliott serves as an Associate Editor for the Journal of the American Statistical Association.

Jeremy M G Taylor

By |

Jeremy Taylor, PhD, is the Pharmacia Research Professor of Biostatistics in the School of Public Health and Professor in the Department of Radiation Oncology in the School of Medicine at the University of Michigan, Ann Arbor. He is the director of the University of Michigan Cancer Center Biostatistics Unit and director of the Cancer/Biostatistics training program. He received his B.A. in Mathematics from Cambridge University and his Ph.D. in Statistics from UC Berkeley. He was on the faculty at UCLA from 1983 to 1998, when he moved to the University of Michigan. He has had visiting positions at the Medical Research Council, Cambridge, England; the University of Adelaide; INSERM, Bordeaux and CSIRO, Sydney, Australia. He is a previously winner of the Mortimer Spiegelman Award from the American Public Health Association and the Michael Fry Award from the Radiation Research Society. He has worked in various areas of Statistics and Biostatistics, including Box-Cox transformations, longitudinal and survival analysis, cure models, missing data, smoothing methods, clinical trial design, surrogate and auxiliary variables. He has been heavily involved in collaborations in the areas of radiation oncology, cancer research and bioinformatics.

I have broad interests and expertise in developing statistical methodology and applying it in biomedical research, particularly in cancer research. I have undertaken research  in power transformations, longitudinal modeling, survival analysis particularly cure models, missing data methods, causal inference and in modeling radiation oncology related data.  Recent interests, specifically related to cancer, are in statistical methods for genomic data, statistical methods for evaluating cancer biomarkers, surrogate endpoints, phase I trial design, statistical methods for personalized medicine and prognostic and predictive model validation.  I strive to develop principled methods that will lead to valid interpretations of the complex data that is collected in biomedical research.