Explore ARCExplore ARC

Antonios M. Koumpias

By |

Antonios M. Koumpias, Ph.D., is Assistant Professor of Economics in the department of Social Sciences at the University of Michigan, Dearborn. Prof. Koumpias is an applied microeconomist with research interests in public economics, with an emphasis on behavioral tax compliance, and health economics. In his research, he employs quasi-experimental methods to disentangle the causal impact of policy interventions that occur at the aggregate (e.g. states) or the individual (e.g. taxpayers) level in a comparative case study setting. Namely, he relies on regression discontinuity designs, regression kink designs, matching methods, and synthetic control methods to perform program evaluation that estimates the causal treatment effect of the policy in question. Examples include the use of a regression discontinuity design to estimate the impact of a tax compliance reminders on payments of overdue income tax liabilities in Greece, matching methods to measure the influence of mass media campaigns in Pakistan on income tax filing and the synthetic control method to evaluate the long-term effect of state Medicaid expansions on mortality.

Evolution of Annual Changes in All-cause Childless Adult Mortality in New York State following 2001 State Medicaid Expansion

Jinseok Kim

By |

Jinseok Kim, Ph.D., is Research Assistant Professor in the Institute for Social Research at the University of Michigan, Ann Arbor.  Prof. Kim works on resolving named entity ambiguity in large-scale scholarly data (publication, patent, and funding records) in digital libraries. Especially, his current research is focused on developing methods for disambiguating author and affiliation names at a digital library scale using various supervised machine learning approaches trained on automatically labeled data . Disambiguated data from multiple sources will be integrated to be analyzed for insights into research production, scientific collaboration, funding evaluation, and research policy at a national level.

Yi Lu Murphey

By |

Dr. Yi Lu Murphey is an Associate Dean for Graduate Education and Research, a Professor of the ECE(Electrical and Computer Engineering) department and the director of the Intelligent Systems Lab at the University of Michigan, Dearborn. She received a M.S. degree in computer science from Wayne State University, Detroit, Michigan, in 1983, and a Ph.D degree with a major in Computer Engineering and a minor in Control Engineering from the University of Michigan, Ann Arbor, Michigan, in 1989. Her current research interests are in the areas of machine learning, pattern recognition, computer vision and intelligent systems with applications to automated and connected vehicles, optimal vehicle power management, data analytics, and robotic vision systems. She has authored over 130 publications in refereed journals and conference proceedings. She is an editor for the Journal of Pattern Recognition, a senior life member of AAAI and a fellow of IEEE.

Brenda Gillespie

By |

Brenda Gillespie, PhD, is Associate Director in Consulting for Statistics, Computing and Analytics Research (CSCAR) with a secondary appointment as Associate Research Professor in the department of Biostatistics in the School of Public Health at the University of Michigan, Ann Arbor. She provides statistical collaboration and support for numerous research projects at the University of Michigan. She teaches Biostatistics courses as well as CSCAR short courses in survival analysis, regression analysis, sample size calculation, generalized linear models, meta-analysis, and statistical ethics. Her major areas of expertise are clinical trials and survival analysis.

Prof. Gillespie’s research interests are in the area of censored data and clinical trials. One research interest concerns the application of categorical regression models to the case of censored survival data. This technique is useful in modeling the hazard function (instead of treating it as a nuisance parameter, as in Cox proportional hazards regression), or in the situation where time-related interactions (i.e., non-proportional hazards) are present. An investigation comparing various categorical modeling strategies is currently in progress.

Another area of interest is the analysis of cross-over trials with censored data. Brenda has developed (with M. Feingold) a set of nonparametric methods for testing and estimation in this setting. Our methods out-perform previous methods in most cases.

Satish Narayanasamy

By |

Satish Narayanasamy, Ph.D., is Associate Professor in the Electrical Engineering and Computer Science department in the College of Engineering at the University of Michigan, Ann Arbor. Satish’s interests are working at the intersection of computer architecture, software systems and program analysis. His current interests include concurrency, security, customized architectures and tools for mobile and web applications, machine learning assisted program analysis, and tools for teaching at scale.

Ding Zhao

By |

Ding Zhao, PhD, is Assistant Research Scientist in the department of Mechanical Engineering, College of Engineering with a secondary appointment in the Robotics Institute at The University of Michigan, Ann Arbor.

Dr. Zhao’s research interests include autonomous vehicles, intelligent/connected transportation, traffic safety, human-machine interaction, rare events analysis, dynamics and control, machine learning, and big data analysis

 

Peter Adriaens

By |

My research focus is on the development and application of machine learning tools to large scale financial and unstructured (textual) data to extract, quantify and predict risk profiles and investment grade rating of private and public companies.  Example datasets include social media and financial aggregators such as Bloomberg, Pitchbook, and Privco.

V. G. Vinod Vydiswaran

By |

V.G.Vinod Vydiswaran, PhD, is Assistant Professor in the Department of Learning Health Sciences with a secondary appointment in the School of Information at the University of Michigan, Ann Arbor.

Dr. Vydiswaran’s research focuses on developing and applying text mining, natural language processing, and machine learning methodologies for extracting relevant information from health-related text corpora. This includes medically relevant information from clinical notes and biomedical literature, and studying the information quality and credibility of online health communication (via health forums and tweets). His previous work includes developing novel information retrieval models to assist clinical decision making, modeling information trustworthiness, and addressing the vocabulary gap between health professionals and  laypersons.

Z. Morley Mao

By |

Z. Morley Mao, PhD, is Professor of Electrical Engineering and Computer Science, College of Engineering, at the University of Michigan, Ann Arbor campus.